We have a circle $PQRS$ with center $O$. We are given that $\angle UQR = 68^\circ$, $\angle TPS = 74^\circ$, and $\angle QSR = 40^\circ$. We need to find the value of $\angle PRS$.

GeometryCirclesCyclic QuadrilateralsAnglesGeometric Proofs
2025/4/19

1. Problem Description

We have a circle PQRSPQRS with center OO. We are given that UQR=68\angle UQR = 68^\circ, TPS=74\angle TPS = 74^\circ, and QSR=40\angle QSR = 40^\circ. We need to find the value of PRS\angle PRS.

2. Solution Steps

First, we find PQR\angle PQR using the exterior angle property. Since UQR=68\angle UQR = 68^\circ, then PQR=18068=112\angle PQR = 180^\circ - 68^\circ = 112^\circ.
Next, we find RSP\angle RSP using the exterior angle property. Since TPS=74\angle TPS = 74^\circ, then RSP=18074=106\angle RSP = 180^\circ - 74^\circ = 106^\circ.
Since PQRSPQRS is a cyclic quadrilateral, opposite angles are supplementary. Thus, PQR+PSR=180\angle PQR + \angle PSR = 180^\circ and QPS+QRS=180\angle QPS + \angle QRS = 180^\circ.
Also, PSR=QSR+PSQ\angle PSR = \angle QSR + \angle PSQ, so PSQ=PSRQSR=10640=66\angle PSQ = \angle PSR - \angle QSR = 106^\circ - 40^\circ = 66^\circ.
Now, consider quadrilateral PQRSPQRS. Since it is a cyclic quadrilateral, QRS+QPS=180\angle QRS + \angle QPS = 180^\circ.
Also, QRS=QRP+PRS\angle QRS = \angle QRP + \angle PRS.
Since TPS=74\angle TPS = 74^\circ, SRQ=180SPQ\angle SRQ = 180^\circ - \angle SPQ. Since PQRSPQRS is cyclic, SPQ\angle SPQ and SRQ\angle SRQ sum to 180180^\circ. Also since TPSTPS form a line we have SPQ+TPS=180\angle SPQ+\angle TPS=180^\circ, SPQ=18074=106\angle SPQ = 180^\circ-74^\circ = 106^\circ.
This implies that SRQ=180106=74\angle SRQ = 180^\circ-106^\circ=74^\circ.
We also know that QSR=40\angle QSR = 40^\circ, so PRS=SRQQSR=7440=34\angle PRS = \angle SRQ-\angle QSR = 74^\circ-40^\circ=34^\circ.
However, using PQR=112\angle PQR=112^\circ and PSR=106\angle PSR = 106^\circ we have PQR+PSR=112+106=218180\angle PQR + \angle PSR = 112 + 106 = 218^\circ \neq 180^\circ.
Therefore, we proceed with the following. Since TPS=74\angle TPS = 74^\circ, SPQ=18074=106\angle SPQ=180-74=106^\circ. Since PQR+PSR=180\angle PQR + \angle PSR =180 and QSR=40\angle QSR=40^\circ, we also have PSQ=PSR40\angle PSQ = \angle PSR -40. Also, PQR+PSR=180\angle PQR + \angle PSR=180. Also, PQR=18068=112\angle PQR = 180-68 = 112^\circ. Since UQR=68\angle UQR = 68^\circ, PQR=18068=112\angle PQR = 180^\circ - 68^\circ = 112^\circ.
Since QRS+QPS=180\angle QRS + \angle QPS = 180^\circ, we need to calculate QPS\angle QPS. Also, PSR=180PQR=180112=68\angle PSR = 180 - \angle PQR = 180 - 112 = 68^\circ.
Then PSQ=PSRQSR=6840=28\angle PSQ = \angle PSR - \angle QSR = 68 - 40 = 28^\circ.
In triangle PSQPSQ, PQS=180SPQPSQ=18010628=46\angle PQS = 180 - \angle SPQ - \angle PSQ = 180 - 106 - 28 = 46^\circ.
Since PQR=112\angle PQR = 112^\circ, PQR=PQS+SQR=112\angle PQR = \angle PQS + \angle SQR = 112^\circ.
Therefore, SQR=11246=66\angle SQR = 112 - 46 = 66^\circ.
The angles in triangle SQRSQR are SQR=66,QSR=40\angle SQR=66, \angle QSR=40, therefore QRS=1806640=74\angle QRS = 180-66-40 = 74. Thus PRS=74x\angle PRS = 74-x
We have QPS=106\angle QPS = 106^\circ and QRS=180106=74\angle QRS = 180^\circ - 106^\circ = 74^\circ.
Thus, PRS=QRSQRP\angle PRS = \angle QRS - \angle QRP, but since QSR=40\angle QSR = 40^\circ it cannot exceed 7474^\circ.
Therefore the solution given earlier of SRQ=180SPQ=74\angle SRQ=180^\circ-\angle SPQ = 74^\circ.
Then since QSR=40\angle QSR=40^\circ, PRS=34\angle PRS=34^\circ.

3. Final Answer

34

Related problems in "Geometry"

A rectangle $PQRS$ has dimensions $20$ cm by $(10+10)$ cm $= 20$ cm. A square of side $x$ cm is cut ...

AreaRectangleSquareAlgebraic Equations
2025/4/19

The diagram shows a rectangle $PQRS$ with length $10+10=20$ cm and width $20$ cm. A square of side $...

AreaRectangleSquareAlgebraic Equations
2025/4/19

We are given the coordinates of the vertices of a quadrilateral UVWX: $U(6,-2)$, $V(1,3)$, $W(-7,6)$...

Coordinate GeometryQuadrilateralsSlopeDistance FormulaParallelogram
2025/4/19

The problem asks us to find the coordinates of point $D$ such that points $A(-2, 3)$, $B(2, 8)$, $C(...

ParallelogramCoordinate GeometryMidpoint Formula
2025/4/19

The problem requires converting equations from one coordinate system to another. We will solve probl...

Coordinate SystemsCylindrical CoordinatesSpherical CoordinatesCoordinate Transformations
2025/4/19

The problem requires converting equations from rectangular coordinates $(x, y, z)$ to cylindrical co...

Coordinate SystemsCoordinate TransformationsCylindrical CoordinatesSpherical Coordinates3D Geometry
2025/4/19

We are asked to describe the graphs of the given cylindrical or spherical equations. Problem 7: $r =...

3D GeometryCylindrical CoordinatesSpherical CoordinatesCoordinate SystemsGraphing
2025/4/19

The problem requires converting Cartesian coordinates to cylindrical coordinates. (a) Convert $(2, 2...

Coordinate SystemsCartesian CoordinatesCylindrical CoordinatesCoordinate Transformation3D Geometry
2025/4/19

We are given a circle $PQRS$ with center $O$. We are also given that $\angle UQR = 68^\circ$, $\angl...

Circle GeometryCyclic QuadrilateralAnglesExterior Angle Theorem
2025/4/19

The problem asks to convert the given spherical coordinates to Cartesian coordinates. (a) The spheri...

Coordinate GeometrySpherical CoordinatesCartesian Coordinates3D GeometryCoordinate Transformation
2025/4/19