We are given the coordinates of the vertices of a quadrilateral UVWX: $U(6,-2)$, $V(1,3)$, $W(-7,6)$, and $X(-2,1)$. We need to find the slopes and lengths of the sides UV, VW, WX, and XU and then determine the type of quadrilateral.

GeometryCoordinate GeometryQuadrilateralsSlopeDistance FormulaParallelogram
2025/4/19

1. Problem Description

We are given the coordinates of the vertices of a quadrilateral UVWX: U(6,2)U(6,-2), V(1,3)V(1,3), W(7,6)W(-7,6), and X(2,1)X(-2,1). We need to find the slopes and lengths of the sides UV, VW, WX, and XU and then determine the type of quadrilateral.

2. Solution Steps

First, we find the slope of each side. The slope mm between two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by the formula:
m=y2y1x2x1m = \frac{y_2 - y_1}{x_2 - x_1}
Slope of UV:
mUV=3(2)16=55=1m_{UV} = \frac{3 - (-2)}{1 - 6} = \frac{5}{-5} = -1
Slope of VW:
mVW=6371=38=38m_{VW} = \frac{6 - 3}{-7 - 1} = \frac{3}{-8} = -\frac{3}{8}
Slope of WX:
mWX=162(7)=55=1m_{WX} = \frac{1 - 6}{-2 - (-7)} = \frac{-5}{5} = -1
Slope of XU:
mXU=216(2)=38=38m_{XU} = \frac{-2 - 1}{6 - (-2)} = \frac{-3}{8} = -\frac{3}{8}
Next, we find the length of each side. The distance dd between two points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2) is given by the distance formula:
d=(x2x1)2+(y2y1)2d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
Length of UV:
dUV=(16)2+(3(2))2=(5)2+(5)2=25+25=50=52d_{UV} = \sqrt{(1 - 6)^2 + (3 - (-2))^2} = \sqrt{(-5)^2 + (5)^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2}
Length of VW:
dVW=(71)2+(63)2=(8)2+(3)2=64+9=73d_{VW} = \sqrt{(-7 - 1)^2 + (6 - 3)^2} = \sqrt{(-8)^2 + (3)^2} = \sqrt{64 + 9} = \sqrt{73}
Length of WX:
dWX=(2(7))2+(16)2=(5)2+(5)2=25+25=50=52d_{WX} = \sqrt{(-2 - (-7))^2 + (1 - 6)^2} = \sqrt{(5)^2 + (-5)^2} = \sqrt{25 + 25} = \sqrt{50} = 5\sqrt{2}
Length of XU:
dXU=(6(2))2+(21)2=(8)2+(3)2=64+9=73d_{XU} = \sqrt{(6 - (-2))^2 + (-2 - 1)^2} = \sqrt{(8)^2 + (-3)^2} = \sqrt{64 + 9} = \sqrt{73}
Since UV = WX and VW = XU, we have a parallelogram.
Now, we check if it is a rectangle. For a rectangle, adjacent sides must be perpendicular.
mUV×mVW=(1)×(38)=381m_{UV} \times m_{VW} = (-1) \times (-\frac{3}{8}) = \frac{3}{8} \ne -1
Thus, the quadrilateral is not a rectangle.
It's a parallelogram.

3. Final Answer

slope of UV = -1
slope of VW = -3/8
slope of WX = -1
slope of XU = -3/8
length of UV = 525\sqrt{2}
length of VW = 73\sqrt{73}
length of WX = 525\sqrt{2}
length of XU = 73\sqrt{73}
Quadrilateral UVWX can BEST be described as parallelogram

Related problems in "Geometry"

A rectangle $PQRS$ has dimensions $20$ cm by $(10+10)$ cm $= 20$ cm. A square of side $x$ cm is cut ...

AreaRectangleSquareAlgebraic Equations
2025/4/19

The diagram shows a rectangle $PQRS$ with length $10+10=20$ cm and width $20$ cm. A square of side $...

AreaRectangleSquareAlgebraic Equations
2025/4/19

The problem asks us to find the coordinates of point $D$ such that points $A(-2, 3)$, $B(2, 8)$, $C(...

ParallelogramCoordinate GeometryMidpoint Formula
2025/4/19

The problem requires converting equations from one coordinate system to another. We will solve probl...

Coordinate SystemsCylindrical CoordinatesSpherical CoordinatesCoordinate Transformations
2025/4/19

We have a circle $PQRS$ with center $O$. We are given that $\angle UQR = 68^\circ$, $\angle TPS = 7...

CirclesCyclic QuadrilateralsAnglesGeometric Proofs
2025/4/19

The problem requires converting equations from rectangular coordinates $(x, y, z)$ to cylindrical co...

Coordinate SystemsCoordinate TransformationsCylindrical CoordinatesSpherical Coordinates3D Geometry
2025/4/19

We are asked to describe the graphs of the given cylindrical or spherical equations. Problem 7: $r =...

3D GeometryCylindrical CoordinatesSpherical CoordinatesCoordinate SystemsGraphing
2025/4/19

The problem requires converting Cartesian coordinates to cylindrical coordinates. (a) Convert $(2, 2...

Coordinate SystemsCartesian CoordinatesCylindrical CoordinatesCoordinate Transformation3D Geometry
2025/4/19

We are given a circle $PQRS$ with center $O$. We are also given that $\angle UQR = 68^\circ$, $\angl...

Circle GeometryCyclic QuadrilateralAnglesExterior Angle Theorem
2025/4/19

The problem asks to convert the given spherical coordinates to Cartesian coordinates. (a) The spheri...

Coordinate GeometrySpherical CoordinatesCartesian Coordinates3D GeometryCoordinate Transformation
2025/4/19