Given two vectors $\vec{a} = \vec{i} - \vec{j}$ and $\vec{b} = -\vec{i} + p\vec{j} + 2\vec{k}$ in $R^3$. The length of the projection of vector $\vec{a}$ onto $\vec{b}$ is equal to 1. Find the value of $p$.

GeometryVectorsVector ProjectionDot ProductMagnitude3D Geometry
2025/3/16

1. Problem Description

Given two vectors a=ij\vec{a} = \vec{i} - \vec{j} and b=i+pj+2k\vec{b} = -\vec{i} + p\vec{j} + 2\vec{k} in R3R^3. The length of the projection of vector a\vec{a} onto b\vec{b} is equal to

1. Find the value of $p$.

2. Solution Steps

The formula for the projection of vector a\vec{a} onto vector b\vec{b} is given by:
projba=abb2bproj_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2} \vec{b}
The length of the projection is given by:
projba=abb|proj_{\vec{b}} \vec{a}| = \frac{|\vec{a} \cdot \vec{b}|}{|\vec{b}|}
Given that the length of the projection of a\vec{a} onto b\vec{b} is

1. $|\vec{a} \cdot \vec{b}| = |\vec{b}|$

We have a=(110)\vec{a} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} and b=(1p2)\vec{b} = \begin{pmatrix} -1 \\ p \\ 2 \end{pmatrix}.
The dot product ab\vec{a} \cdot \vec{b} is:
ab=(1)(1)+(1)(p)+(0)(2)=1p\vec{a} \cdot \vec{b} = (1)(-1) + (-1)(p) + (0)(2) = -1 - p
The magnitude of b\vec{b} is:
b=(1)2+p2+22=1+p2+4=p2+5|\vec{b}| = \sqrt{(-1)^2 + p^2 + 2^2} = \sqrt{1 + p^2 + 4} = \sqrt{p^2 + 5}
Since projba=1|proj_{\vec{b}} \vec{a}| = 1, we have:
abb=1\frac{|\vec{a} \cdot \vec{b}|}{|\vec{b}|} = 1
1p=p2+5|-1 - p| = \sqrt{p^2 + 5}
(1p)2=p2+5(-1-p)^2 = p^2 + 5
(1+p)2=p2+5(1+p)^2 = p^2 + 5
1+2p+p2=p2+51 + 2p + p^2 = p^2 + 5
2p=42p = 4
p=2p = 2

3. Final Answer

The value of pp is
2.

Related problems in "Geometry"

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8

We are given a quadrilateral ABCD with the following angle measures: $\angle ABC = 14^{\circ}$, $\an...

QuadrilateralAnglesAngle SumReflex Angle
2025/6/8

The problem asks us to find the size of angle $d$ in the given diagram. The diagram shows a quadrila...

QuadrilateralsAnglesExterior AnglesInterior Angles
2025/6/8

The problem is to find the size of angle DAB in a quadrilateral ABCD. We are given that angle D = $8...

QuadrilateralAnglesGeometric Proof
2025/6/8

The problem asks to find the size of angle $a$ in the given quadrilateral. The other angles in the q...

QuadrilateralsAnglesPolygon Interior Angles
2025/6/8

We are given a triangle $ABD$ with a smaller triangle $DEC$ inside. Triangle $DEC$ is equilateral. A...

TrianglesAnglesEquilateral TriangleAngle Calculation
2025/6/8

We are given a triangle $ABC$ with a smaller equilateral triangle $DEC$ inside it. The angle $BAC$ i...

TrianglesAnglesGeometric ProofsEquilateral Triangle
2025/6/8

The problem states that triangle $DEC$ is an equilateral triangle and angle $BAC$ is $50$ degrees. T...

TrianglesAnglesEquilateral TriangleAngle Sum PropertySupplementary Angles
2025/6/8

The problem describes a triangle ABC with a smaller equilateral triangle DEC inside it. We are given...

TrianglesAnglesGeometric Proofs
2025/6/8