The problem consists of two parts. Part (a): Simplify the expression $\frac{3\frac{1}{12} + \frac{7}{8}}{2\frac{1}{4} - \frac{1}{6}}$. Part (b): (i) Make $n$ the subject of the formula $p = \frac{m}{2} - \frac{n^2}{5m}$. (ii) Find the value of $n$, correct to three significant figures, when $p = 14$ and $m = -8$.

AlgebraFractionsSimplificationSolving EquationsSubject of FormulaSquare RootsSignificant Figures
2025/4/21

1. Problem Description

The problem consists of two parts.
Part (a): Simplify the expression 3112+7821416\frac{3\frac{1}{12} + \frac{7}{8}}{2\frac{1}{4} - \frac{1}{6}}.
Part (b):
(i) Make nn the subject of the formula p=m2n25mp = \frac{m}{2} - \frac{n^2}{5m}.
(ii) Find the value of nn, correct to three significant figures, when p=14p = 14 and m=8m = -8.

2. Solution Steps

(a) Simplify the expression 3112+7821416\frac{3\frac{1}{12} + \frac{7}{8}}{2\frac{1}{4} - \frac{1}{6}}.
First, we convert the mixed numbers to improper fractions:
3112=3×12+112=36+112=37123\frac{1}{12} = \frac{3 \times 12 + 1}{12} = \frac{36 + 1}{12} = \frac{37}{12}
214=2×4+14=8+14=942\frac{1}{4} = \frac{2 \times 4 + 1}{4} = \frac{8 + 1}{4} = \frac{9}{4}
So the expression becomes:
3712+789416\frac{\frac{37}{12} + \frac{7}{8}}{\frac{9}{4} - \frac{1}{6}}
We find a common denominator for the fractions in the numerator. The least common multiple of 12 and 8 is
2

4. $\frac{37}{12} = \frac{37 \times 2}{12 \times 2} = \frac{74}{24}$

78=7×38×3=2124\frac{7}{8} = \frac{7 \times 3}{8 \times 3} = \frac{21}{24}
So, 3712+78=7424+2124=74+2124=9524\frac{37}{12} + \frac{7}{8} = \frac{74}{24} + \frac{21}{24} = \frac{74 + 21}{24} = \frac{95}{24}
We find a common denominator for the fractions in the denominator. The least common multiple of 4 and 6 is
1

2. $\frac{9}{4} = \frac{9 \times 3}{4 \times 3} = \frac{27}{12}$

16=1×26×2=212\frac{1}{6} = \frac{1 \times 2}{6 \times 2} = \frac{2}{12}
So, 9416=2712212=27212=2512\frac{9}{4} - \frac{1}{6} = \frac{27}{12} - \frac{2}{12} = \frac{27 - 2}{12} = \frac{25}{12}
The expression is now:
95242512=9524÷2512=9524×1225=95×1224×25=952×25=9550=1910=1.9\frac{\frac{95}{24}}{\frac{25}{12}} = \frac{95}{24} \div \frac{25}{12} = \frac{95}{24} \times \frac{12}{25} = \frac{95 \times 12}{24 \times 25} = \frac{95}{2 \times 25} = \frac{95}{50} = \frac{19}{10} = 1.9
(b) (i) Make nn the subject of the formula p=m2n25mp = \frac{m}{2} - \frac{n^2}{5m}.
p=m2n25mp = \frac{m}{2} - \frac{n^2}{5m}
n25m=m2p\frac{n^2}{5m} = \frac{m}{2} - p
n2=5m(m2p)n^2 = 5m (\frac{m}{2} - p)
n2=5m225mpn^2 = \frac{5m^2}{2} - 5mp
n=±5m225mpn = \pm \sqrt{\frac{5m^2}{2} - 5mp}
(ii) Find the value of nn, correct to three significant figures, when p=14p = 14 and m=8m = -8.
n=±5(8)225(8)(14)n = \pm \sqrt{\frac{5(-8)^2}{2} - 5(-8)(14)}
n=±5(64)2+40(14)n = \pm \sqrt{\frac{5(64)}{2} + 40(14)}
n=±3202+560n = \pm \sqrt{\frac{320}{2} + 560}
n=±160+560n = \pm \sqrt{160 + 560}
n=±720n = \pm \sqrt{720}
n=±26.83281573n = \pm 26.83281573
Correct to three significant figures, n=±26.8n = \pm 26.8.

3. Final Answer

(a) 1.91.9
(b) (i) n=±5m225mpn = \pm \sqrt{\frac{5m^2}{2} - 5mp}
(ii) n=±26.8n = \pm 26.8

Related problems in "Algebra"

The problem asks to find the general term for the sequence 1, 5, 14, 30, 55, ...

SequencesSeriesPolynomialsSummation
2025/6/27

The problem asks us to find the axis of symmetry and the vertex of the graph of the given quadratic ...

Quadratic FunctionsVertex FormAxis of SymmetryParabola
2025/6/27

The problem asks us to sketch the graphs of the following two quadratic functions: (1) $y = x^2 + 1$...

Quadratic FunctionsParabolasGraphingVertex FormTransformations of Graphs
2025/6/27

Given two complex numbers $Z_a = 1 + \sqrt{3}i$ and $Z_b = 2 - 2i$, we are asked to: I. Convert $Z_a...

Complex NumbersPolar FormDe Moivre's TheoremComplex Number MultiplicationComplex Number DivisionRoots of Complex Numbers
2025/6/27

The problem involves complex numbers. Given $z_1 = 5 + 2i$, $z_2 = 7 + yi$, and $z_3 = x - 4i$, we n...

Complex NumbersComplex Number ArithmeticComplex ConjugateSquare Root of Complex Number
2025/6/27

The problem asks us to find the range of values for the constant $a$ such that the equation $4^x - a...

Quadratic EquationsInequalitiesExponentsRoots of EquationsDiscriminant
2025/6/27

Given $A = \{1, 2\}$ and $B = \mathbb{R}$, we need to sketch the graph of $R = A \times B$. We need ...

SetsRelationsFunctionsCartesian ProductGraphs
2025/6/27

Solve the equation $ \lceil x^2 - x \rceil = x + 3 $ for $x \in \mathbb{R}$, where $ \lceil x \rceil...

Ceiling FunctionQuadratic EquationsInteger Solutions
2025/6/27

A lemming runs from point A to a cliff at B at 4 m/s, jumps over the edge and falls to point C at an...

Word ProblemLinear EquationsDistance, Speed, and Time
2025/6/27

Given three matrices $X$, $Y$, and $Z$ as follows: $X = \begin{bmatrix} 5 & 4 & -7 \\ -3 & p & 5 \en...

MatricesMatrix TransposeMatrix MultiplicationMatrix Addition
2025/6/27