The problem 15 is to divide the polynomial $a^2b - ab^2 + \frac{3}{8}a^2b^2$ by $-\frac{5}{3}ab$. The problem 16 is to divide the polynomial $\frac{1}{3}x^4y^3 - \frac{1}{5}x^3y^2 + \frac{1}{4}x^2y$ by $-\frac{1}{5}xy^2$.

AlgebraPolynomial DivisionAlgebraic Manipulation
2025/4/21

1. Problem Description

The problem 15 is to divide the polynomial a2bab2+38a2b2a^2b - ab^2 + \frac{3}{8}a^2b^2 by 53ab-\frac{5}{3}ab.
The problem 16 is to divide the polynomial 13x4y315x3y2+14x2y\frac{1}{3}x^4y^3 - \frac{1}{5}x^3y^2 + \frac{1}{4}x^2y by 15xy2-\frac{1}{5}xy^2.

2. Solution Steps

Problem 15:
We divide each term of the polynomial by 53ab-\frac{5}{3}ab.
a2b53ab=a2b35ab=3a5\frac{a^2b}{-\frac{5}{3}ab} = a^2b \cdot \frac{-3}{5ab} = \frac{-3a}{5}
ab253ab=ab235ab=3b5\frac{-ab^2}{-\frac{5}{3}ab} = -ab^2 \cdot \frac{-3}{5ab} = \frac{3b}{5}
38a2b253ab=38a2b235ab=9ab40\frac{\frac{3}{8}a^2b^2}{-\frac{5}{3}ab} = \frac{3}{8}a^2b^2 \cdot \frac{-3}{5ab} = \frac{-9ab}{40}
Adding the terms together we get:
3a5+3b59ab40\frac{-3a}{5} + \frac{3b}{5} - \frac{9ab}{40}
Problem 16:
We divide each term of the polynomial by 15xy2-\frac{1}{5}xy^2.
13x4y315xy2=13x4y35xy2=53x3y\frac{\frac{1}{3}x^4y^3}{-\frac{1}{5}xy^2} = \frac{1}{3}x^4y^3 \cdot \frac{-5}{xy^2} = \frac{-5}{3}x^3y
15x3y215xy2=15x3y25xy2=x2\frac{-\frac{1}{5}x^3y^2}{-\frac{1}{5}xy^2} = -\frac{1}{5}x^3y^2 \cdot \frac{-5}{xy^2} = x^2
14x2y15xy2=14x2y5xy2=5x4y\frac{\frac{1}{4}x^2y}{-\frac{1}{5}xy^2} = \frac{1}{4}x^2y \cdot \frac{-5}{xy^2} = \frac{-5x}{4y}
Adding the terms together we get:
53x3y+x25x4y\frac{-5}{3}x^3y + x^2 - \frac{5x}{4y}

3. Final Answer

For problem 15: 3a5+3b59ab40\frac{-3a}{5} + \frac{3b}{5} - \frac{9ab}{40}
For problem 16: 53x3y+x25x4y\frac{-5}{3}x^3y + x^2 - \frac{5x}{4y}

Related problems in "Algebra"