First, we use the distributive property (FOIL method) to expand the expression:
( 5 + 8 7 x ) ( 2 5 + 6 7 x ) = ( 5 ) ( 2 5 ) + ( 5 ) ( 6 7 x ) + ( 8 7 x ) ( 2 5 ) + ( 8 7 x ) ( 6 7 x ) (\sqrt{5} + 8\sqrt{7x})(2\sqrt{5} + 6\sqrt{7x}) = (\sqrt{5})(2\sqrt{5}) + (\sqrt{5})(6\sqrt{7x}) + (8\sqrt{7x})(2\sqrt{5}) + (8\sqrt{7x})(6\sqrt{7x}) ( 5 + 8 7 x ) ( 2 5 + 6 7 x ) = ( 5 ) ( 2 5 ) + ( 5 ) ( 6 7 x ) + ( 8 7 x ) ( 2 5 ) + ( 8 7 x ) ( 6 7 x )
Next, we simplify each term:
( 5 ) ( 2 5 ) = 2 ( 5 ) 2 = 2 ( 5 ) = 10 (\sqrt{5})(2\sqrt{5}) = 2(\sqrt{5})^2 = 2(5) = 10 ( 5 ) ( 2 5 ) = 2 ( 5 ) 2 = 2 ( 5 ) = 10 ( 5 ) ( 6 7 x ) = 6 5 ( 7 x ) = 6 35 x (\sqrt{5})(6\sqrt{7x}) = 6\sqrt{5(7x)} = 6\sqrt{35x} ( 5 ) ( 6 7 x ) = 6 5 ( 7 x ) = 6 35 x ( 8 7 x ) ( 2 5 ) = 16 7 x ( 5 ) = 16 35 x (8\sqrt{7x})(2\sqrt{5}) = 16\sqrt{7x(5)} = 16\sqrt{35x} ( 8 7 x ) ( 2 5 ) = 16 7 x ( 5 ) = 16 35 x ( 8 7 x ) ( 6 7 x ) = 48 ( 7 x ) 2 = 48 ( 7 x ) = 336 x (8\sqrt{7x})(6\sqrt{7x}) = 48(\sqrt{7x})^2 = 48(7x) = 336x ( 8 7 x ) ( 6 7 x ) = 48 ( 7 x ) 2 = 48 ( 7 x ) = 336 x
Now we combine all the terms:
10 + 6 35 x + 16 35 x + 336 x 10 + 6\sqrt{35x} + 16\sqrt{35x} + 336x 10 + 6 35 x + 16 35 x + 336 x We can combine the terms with 35 x \sqrt{35x} 35 x : 6 35 x + 16 35 x = 22 35 x 6\sqrt{35x} + 16\sqrt{35x} = 22\sqrt{35x} 6 35 x + 16 35 x = 22 35 x
So the final expression is:
10 + 22 35 x + 336 x 10 + 22\sqrt{35x} + 336x 10 + 22 35 x + 336 x