We are asked to multiply and simplify the expression $(\sqrt{7}-2\sqrt{3})^2$.AlgebraSimplificationExponentsRadicalsAlgebraic Manipulation2025/4/211. Problem DescriptionWe are asked to multiply and simplify the expression (7−23)2(\sqrt{7}-2\sqrt{3})^2(7−23)2.2. Solution StepsWe will use the formula (a−b)2=a2−2ab+b2(a-b)^2 = a^2 - 2ab + b^2(a−b)2=a2−2ab+b2.Here, a=7a = \sqrt{7}a=7 and b=23b = 2\sqrt{3}b=23.Then,(7−23)2=(7)2−2(7)(23)+(23)2(\sqrt{7}-2\sqrt{3})^2 = (\sqrt{7})^2 - 2(\sqrt{7})(2\sqrt{3}) + (2\sqrt{3})^2(7−23)2=(7)2−2(7)(23)+(23)2=7−47⋅3+4(3)= 7 - 4\sqrt{7\cdot3} + 4(3)=7−47⋅3+4(3)=7−421+12= 7 - 4\sqrt{21} + 12=7−421+12=19−421= 19 - 4\sqrt{21}=19−4213. Final Answer19−42119-4\sqrt{21}19−421