First, we factor the term 4x2−9. This is a difference of squares, so we can write it as: 4x2−9=(2x)2−(3)2 4x2−9=(2x−3)(2x+3) Now we substitute this factorization into the original expression:
(4x2−9)×2x−32x+3=(2x−3)(2x+3)×2x−32x+3 Now we can cancel out the (2x−3) terms in the numerator and denominator, assuming 2x−3=0, so x=23: (2x−3)(2x+3)×2x−32x+3=(2x+3)(2x+3) Finally, we can write this as:
(2x+3)(2x+3)=(2x+3)2 Expanding this gives us:
(2x+3)2=(2x)2+2(2x)(3)+(3)2=4x2+12x+9