We are asked to simplify the complex fraction $\frac{c^2 + 7c + 10}{\frac{c^2 + 5c}{c^3 + 2c^2}}$.
2025/4/21
1. Problem Description
We are asked to simplify the complex fraction .
2. Solution Steps
First, we rewrite the expression as a division problem:
\frac{c^2 + 7c + 10}{\frac{c^2 + 5c}{c^3 + 2c^2}} = (c^2 + 7c + 10) \div \frac{c^2 + 5c}{c^3 + 2c^2}
Then, we change division to multiplication by the reciprocal:
(c^2 + 7c + 10) \cdot \frac{c^3 + 2c^2}{c^2 + 5c}
Next, we factor each polynomial:
c^2 + 7c + 10 = (c+2)(c+5)
c^3 + 2c^2 = c^2(c+2)
c^2 + 5c = c(c+5)
Substituting the factored forms, we have:
(c+2)(c+5) \cdot \frac{c^2(c+2)}{c(c+5)}
Now, we simplify the expression by canceling common factors:
\frac{(c+2)(c+5) \cdot c^2(c+2)}{c(c+5)} = \frac{(c+2)(c+5) \cdot c \cdot c(c+2)}{c(c+5)}
Cancel out and :
(c+2) \cdot c(c+2) = c(c+2)^2
Expanding the square:
c(c+2)^2 = c(c^2 + 4c + 4)
Finally, distribute the :
c(c^2 + 4c + 4) = c^3 + 4c^2 + 4c