We are asked to simplify the expression $(x+4)^2 + (3x+2)(x-8)$.AlgebraPolynomialsSimplificationExpansionAlgebraic Expressions2025/3/171. Problem DescriptionWe are asked to simplify the expression (x+4)2+(3x+2)(x−8)(x+4)^2 + (3x+2)(x-8)(x+4)2+(3x+2)(x−8).2. Solution StepsFirst, we expand (x+4)2(x+4)^2(x+4)2:(x+4)2=(x+4)(x+4)=x2+4x+4x+16=x2+8x+16(x+4)^2 = (x+4)(x+4) = x^2 + 4x + 4x + 16 = x^2 + 8x + 16(x+4)2=(x+4)(x+4)=x2+4x+4x+16=x2+8x+16Next, we expand (3x+2)(x−8)(3x+2)(x-8)(3x+2)(x−8):(3x+2)(x−8)=3x2−24x+2x−16=3x2−22x−16(3x+2)(x-8) = 3x^2 - 24x + 2x - 16 = 3x^2 - 22x - 16(3x+2)(x−8)=3x2−24x+2x−16=3x2−22x−16Now, we add the two expressions:(x2+8x+16)+(3x2−22x−16)=x2+3x2+8x−22x+16−16=4x2−14x(x^2 + 8x + 16) + (3x^2 - 22x - 16) = x^2 + 3x^2 + 8x - 22x + 16 - 16 = 4x^2 - 14x(x2+8x+16)+(3x2−22x−16)=x2+3x2+8x−22x+16−16=4x2−14x3. Final Answer4x2−14x4x^2 - 14x4x2−14x