$x=4+\sqrt{2}$, $y=4-\sqrt{2}$ のとき、$x^2+y^2$ の値を求める。代数学式の計算展開平方根数値計算2025/4/241. 問題の内容x=4+2x=4+\sqrt{2}x=4+2, y=4−2y=4-\sqrt{2}y=4−2 のとき、x2+y2x^2+y^2x2+y2 の値を求める。2. 解き方の手順まず、x2x^2x2 と y2y^2y2 をそれぞれ計算します。x2=(4+2)2=42+2⋅4⋅2+(2)2=16+82+2=18+82x^2 = (4+\sqrt{2})^2 = 4^2 + 2 \cdot 4 \cdot \sqrt{2} + (\sqrt{2})^2 = 16 + 8\sqrt{2} + 2 = 18 + 8\sqrt{2}x2=(4+2)2=42+2⋅4⋅2+(2)2=16+82+2=18+82y2=(4−2)2=42−2⋅4⋅2+(2)2=16−82+2=18−82y^2 = (4-\sqrt{2})^2 = 4^2 - 2 \cdot 4 \cdot \sqrt{2} + (\sqrt{2})^2 = 16 - 8\sqrt{2} + 2 = 18 - 8\sqrt{2}y2=(4−2)2=42−2⋅4⋅2+(2)2=16−82+2=18−82次に、x2+y2x^2 + y^2x2+y2 を計算します。x2+y2=(18+82)+(18−82)=18+18=36x^2 + y^2 = (18 + 8\sqrt{2}) + (18 - 8\sqrt{2}) = 18 + 18 = 36x2+y2=(18+82)+(18−82)=18+18=363. 最終的な答え363636