The problem asks to express each given expression as a single logarithm. (a) $2log_a5 + log_a4 - log_a10$ (b) $2log_b3 - log_b15 + log_b5$ (c) $log_512 - (\frac{1}{2}log_59 + \frac{1}{3}log_58)$

AlgebraLogarithmsLogarithmic PropertiesProduct RuleQuotient RulePower Rule
2025/3/17

1. Problem Description

The problem asks to express each given expression as a single logarithm.
(a) 2loga5+loga4loga102log_a5 + log_a4 - log_a10
(b) 2logb3logb15+logb52log_b3 - log_b15 + log_b5
(c) log512(12log59+13log58)log_512 - (\frac{1}{2}log_59 + \frac{1}{3}log_58)

2. Solution Steps

(a)
First, use the power rule of logarithms: nlogax=logaxnnlog_ax = log_ax^n.
2loga5=loga52=loga252log_a5 = log_a5^2 = log_a25
Then the expression becomes: loga25+loga4loga10log_a25 + log_a4 - log_a10
Use the product rule of logarithms: logax+logay=logaxylog_ax + log_ay = log_axy.
loga25+loga4=loga(25×4)=loga100log_a25 + log_a4 = log_a(25 \times 4) = log_a100
Then the expression becomes: loga100loga10log_a100 - log_a10
Use the quotient rule of logarithms: logaxlogay=loga(xy)log_ax - log_ay = log_a(\frac{x}{y}).
loga100loga10=loga(10010)=loga10log_a100 - log_a10 = log_a(\frac{100}{10}) = log_a10
(b)
First, use the power rule of logarithms: nlogax=logaxnnlog_ax = log_ax^n.
2logb3=logb32=logb92log_b3 = log_b3^2 = log_b9
Then the expression becomes: logb9logb15+logb5log_b9 - log_b15 + log_b5
Use the quotient rule of logarithms: logaxlogay=loga(xy)log_ax - log_ay = log_a(\frac{x}{y}).
logb9logb15=logb(915)=logb(35)log_b9 - log_b15 = log_b(\frac{9}{15}) = log_b(\frac{3}{5})
Then the expression becomes: logb(35)+logb5log_b(\frac{3}{5}) + log_b5
Use the product rule of logarithms: logax+logay=logaxylog_ax + log_ay = log_axy.
logb(35)+logb5=logb(35×5)=logb3log_b(\frac{3}{5}) + log_b5 = log_b(\frac{3}{5} \times 5) = log_b3
(c)
First, use the power rule of logarithms: nlogax=logaxnnlog_ax = log_ax^n.
12log59=log5912=log59=log53\frac{1}{2}log_59 = log_59^{\frac{1}{2}} = log_5\sqrt{9} = log_53
13log58=log5813=log583=log52\frac{1}{3}log_58 = log_58^{\frac{1}{3}} = log_5\sqrt[3]{8} = log_52
Then the expression becomes: log512(log53+log52)log_512 - (log_53 + log_52)
Use the product rule of logarithms: logax+logay=logaxylog_ax + log_ay = log_axy.
log53+log52=log5(3×2)=log56log_53 + log_52 = log_5(3 \times 2) = log_56
Then the expression becomes: log512log56log_512 - log_56
Use the quotient rule of logarithms: logaxlogay=loga(xy)log_ax - log_ay = log_a(\frac{x}{y}).
log512log56=log5(126)=log52log_512 - log_56 = log_5(\frac{12}{6}) = log_52

3. Final Answer

(a) loga10log_a10
(b) logb3log_b3
(c) log52log_52

Related problems in "Algebra"

We are given that $a$ and $b$ are whole numbers such that $a^b = 121$. We need to evaluate $(a-1)^{b...

ExponentsEquationsInteger Solutions
2025/4/6

The problem is to solve the equation $(x+1)^{\log(x+1)} = 100(x+1)$. It is assumed the base of the ...

LogarithmsEquationsExponentsSolving EquationsAlgebraic Manipulation
2025/4/6

The problem asks us to find the values of $k$ for which the quadratic equation $x^2 - kx + 3 - k = 0...

Quadratic EquationsDiscriminantInequalitiesReal Roots
2025/4/5

The problem states that quadrilateral $ABCD$ has a perimeter of 95 centimeters. The side lengths are...

Linear EquationsGeometryPerimeterQuadrilaterals
2025/4/5

Given that $y = 2x$ and $3^{x+y} = 27$, we need to find the value of $x$.

EquationsExponentsSubstitution
2025/4/5

We are given the equation $\frac{6x+m}{2x^2+7x-15} = \frac{4}{x+5} - \frac{2}{2x-3}$, and we need to...

EquationsRational ExpressionsSolving EquationsSimplificationFactorization
2025/4/5

We are given the equation $\frac{6x+m}{2x^2+7x-15} = \frac{4}{x+5} - \frac{2}{2x-3}$ and we need to ...

EquationsRational ExpressionsSolving for a VariableFactoring
2025/4/5

We are given the equation $\frac{3x+4}{x^2-3x+2} = \frac{A}{x-1} + \frac{B}{x-2}$ and we are asked t...

Partial FractionsAlgebraic ManipulationEquations
2025/4/5

We are given a polynomial $x^3 - 2x^2 + mx + 4$ and told that when it is divided by $x-3$, the remai...

PolynomialsRemainder TheoremAlgebraic Equations
2025/4/5

Given the quadratic equation $4x^2 - 9x - 16 = 0$, where $\alpha$ and $\beta$ are its roots, we need...

Quadratic EquationsRoots of EquationsVieta's Formulas
2025/4/5