与えられた6つの式を展開する問題です。代数学展開多項式代数2025/4/241. 問題の内容与えられた6つの式を展開する問題です。2. 解き方の手順展開は、分配法則を使って括弧を外すことで行います。(1) (x+4)(2x+3)(x+4)(2x+3)(x+4)(2x+3)x(2x+3)+4(2x+3)=2x2+3x+8x+12=2x2+11x+12x(2x+3) + 4(2x+3) = 2x^2 + 3x + 8x + 12 = 2x^2 + 11x + 12x(2x+3)+4(2x+3)=2x2+3x+8x+12=2x2+11x+12(2) (2x+1)(3x−4)(2x+1)(3x-4)(2x+1)(3x−4)2x(3x−4)+1(3x−4)=6x2−8x+3x−4=6x2−5x−42x(3x-4) + 1(3x-4) = 6x^2 - 8x + 3x - 4 = 6x^2 - 5x - 42x(3x−4)+1(3x−4)=6x2−8x+3x−4=6x2−5x−4(3) (5x−3)(x+2)(5x-3)(x+2)(5x−3)(x+2)5x(x+2)−3(x+2)=5x2+10x−3x−6=5x2+7x−65x(x+2) - 3(x+2) = 5x^2 + 10x - 3x - 6 = 5x^2 + 7x - 65x(x+2)−3(x+2)=5x2+10x−3x−6=5x2+7x−6(4) (3x−1)(2x−3)(3x-1)(2x-3)(3x−1)(2x−3)3x(2x−3)−1(2x−3)=6x2−9x−2x+3=6x2−11x+33x(2x-3) - 1(2x-3) = 6x^2 - 9x - 2x + 3 = 6x^2 - 11x + 33x(2x−3)−1(2x−3)=6x2−9x−2x+3=6x2−11x+3(5) (x+2y)(4x−5y)(x+2y)(4x-5y)(x+2y)(4x−5y)x(4x−5y)+2y(4x−5y)=4x2−5xy+8xy−10y2=4x2+3xy−10y2x(4x-5y) + 2y(4x-5y) = 4x^2 - 5xy + 8xy - 10y^2 = 4x^2 + 3xy - 10y^2x(4x−5y)+2y(4x−5y)=4x2−5xy+8xy−10y2=4x2+3xy−10y2(6) (3x−y)(4x−3y)(3x-y)(4x-3y)(3x−y)(4x−3y)3x(4x−3y)−y(4x−3y)=12x2−9xy−4xy+3y2=12x2−13xy+3y23x(4x-3y) - y(4x-3y) = 12x^2 - 9xy - 4xy + 3y^2 = 12x^2 - 13xy + 3y^23x(4x−3y)−y(4x−3y)=12x2−9xy−4xy+3y2=12x2−13xy+3y23. 最終的な答え(1) 2x2+11x+122x^2 + 11x + 122x2+11x+12(2) 6x2−5x−46x^2 - 5x - 46x2−5x−4(3) 5x2+7x−65x^2 + 7x - 65x2+7x−6(4) 6x2−11x+36x^2 - 11x + 36x2−11x+3(5) 4x2+3xy−10y24x^2 + 3xy - 10y^24x2+3xy−10y2(6) 12x2−13xy+3y212x^2 - 13xy + 3y^212x2−13xy+3y2