First, we simplify the numerator:
p23−p2−41=p2(p2−4)3(p2−4)−1(p2)=p2(p2−4)3p2−12−p2=p2(p2−4)2p2−12=p2(p2−4)2(p2−6) Next, we simplify the denominator:
1−p26=p2p2−p26=p2p2−6 Now we divide the simplified numerator by the simplified denominator:
p2p2−6p2(p2−4)2(p2−6)=p2(p2−4)2(p2−6)⋅p2−6p2=p2(p2−4)(p2−6)2(p2−6)p2 We can cancel out the common factors p2 and (p2−6), assuming p2=0 and p2=6. p2−42=(p−2)(p+2)2