We need to simplify the expression: $\frac{3x-1}{x^2+4x} + \frac{7-8x}{x^2+5x+4}$.

AlgebraAlgebraic FractionsSimplificationFactoringPolynomialsCommon Denominator
2025/4/25

1. Problem Description

We need to simplify the expression:
3x1x2+4x+78xx2+5x+4\frac{3x-1}{x^2+4x} + \frac{7-8x}{x^2+5x+4}.

2. Solution Steps

First, we factor the denominators:
x2+4x=x(x+4)x^2 + 4x = x(x+4)
x2+5x+4=(x+1)(x+4)x^2 + 5x + 4 = (x+1)(x+4)
So the expression becomes:
3x1x(x+4)+78x(x+1)(x+4)\frac{3x-1}{x(x+4)} + \frac{7-8x}{(x+1)(x+4)}
To add the two fractions, we need to find a common denominator. The least common denominator is x(x+1)(x+4)x(x+1)(x+4). Thus, we multiply the first fraction by x+1x+1\frac{x+1}{x+1} and the second fraction by xx\frac{x}{x}:
(3x1)(x+1)x(x+1)(x+4)+(78x)xx(x+1)(x+4)\frac{(3x-1)(x+1)}{x(x+1)(x+4)} + \frac{(7-8x)x}{x(x+1)(x+4)}
=(3x2+3xx1)x(x+1)(x+4)+7x8x2x(x+1)(x+4)= \frac{(3x^2+3x-x-1)}{x(x+1)(x+4)} + \frac{7x-8x^2}{x(x+1)(x+4)}
=3x2+2x1x(x+1)(x+4)+7x8x2x(x+1)(x+4)= \frac{3x^2+2x-1}{x(x+1)(x+4)} + \frac{7x-8x^2}{x(x+1)(x+4)}
=3x2+2x1+7x8x2x(x+1)(x+4)= \frac{3x^2+2x-1 + 7x-8x^2}{x(x+1)(x+4)}
=5x2+9x1x(x+1)(x+4)= \frac{-5x^2+9x-1}{x(x+1)(x+4)}
=5x2+9x1x(x2+5x+4)= \frac{-5x^2+9x-1}{x(x^2+5x+4)}
=5x2+9x1x3+5x2+4x= \frac{-5x^2+9x-1}{x^3+5x^2+4x}

3. Final Answer

5x2+9x1x(x+1)(x+4)=5x2+9x1x3+5x2+4x\frac{-5x^2+9x-1}{x(x+1)(x+4)} = \frac{-5x^2+9x-1}{x^3+5x^2+4x}