First, we factor the denominators:
x2+4x=x(x+4) x2+5x+4=(x+1)(x+4) So the expression becomes:
x(x+4)3x−1+(x+1)(x+4)7−8x To add the two fractions, we need to find a common denominator. The least common denominator is x(x+1)(x+4). Thus, we multiply the first fraction by x+1x+1 and the second fraction by xx: x(x+1)(x+4)(3x−1)(x+1)+x(x+1)(x+4)(7−8x)x =x(x+1)(x+4)(3x2+3x−x−1)+x(x+1)(x+4)7x−8x2 =x(x+1)(x+4)3x2+2x−1+x(x+1)(x+4)7x−8x2 =x(x+1)(x+4)3x2+2x−1+7x−8x2 =x(x+1)(x+4)−5x2+9x−1 =x(x2+5x+4)−5x2+9x−1 =x3+5x2+4x−5x2+9x−1