The problem asks us to evaluate the polynomial function $h(x) = 2x^4 - x^3 + 2x^2 - 3x - 4$ at $x = -1$. In other words, we need to find $h(-1)$.

AlgebraPolynomialsFunction EvaluationAlgebraic Manipulation
2025/3/17

1. Problem Description

The problem asks us to evaluate the polynomial function h(x)=2x4x3+2x23x4h(x) = 2x^4 - x^3 + 2x^2 - 3x - 4 at x=1x = -1. In other words, we need to find h(1)h(-1).

2. Solution Steps

To find h(1)h(-1), we substitute 1-1 for xx in the polynomial:
h(1)=2(1)4(1)3+2(1)23(1)4h(-1) = 2(-1)^4 - (-1)^3 + 2(-1)^2 - 3(-1) - 4
Now, we simplify each term:
(1)4=1(-1)^4 = 1
(1)3=1(-1)^3 = -1
(1)2=1(-1)^2 = 1
So,
h(1)=2(1)(1)+2(1)3(1)4h(-1) = 2(1) - (-1) + 2(1) - 3(-1) - 4
h(1)=2+1+2+34h(-1) = 2 + 1 + 2 + 3 - 4
h(1)=84h(-1) = 8 - 4
h(1)=4h(-1) = 4

3. Final Answer

4