First, we factor the denominators:
4m+8=4(m+2) 3m+6=3(m+2) m2+2m=m(m+2) The given expression becomes:
4(m+2)3m+3(m+2)4m−n−m(m+2)2n To combine the fractions, we need a common denominator. The least common denominator is 12m(m+2). Now, we rewrite each fraction with the common denominator:
4(m+2)3m⋅3m3m=12m(m+2)9m2 3(m+2)4m−n⋅4m4m=12m(m+2)4m(4m−n)=12m(m+2)16m2−4mn m(m+2)2n⋅1212=12m(m+2)24n Thus, the expression becomes:
12m(m+2)9m2+12m(m+2)16m2−4mn−12m(m+2)24n Combining the numerators, we get:
12m(m+2)9m2+16m2−4mn−24n=12m(m+2)25m2−4mn−24n The numerator cannot be factored further.
Therefore, the simplified expression is:
12m(m+2)25m2−4mn−24n.