We are asked to solve the equation $\sqrt{2+i} = x - iy$ for $x$ and $y$, where $i$ is the imaginary unit ($i^2 = -1$).

AlgebraComplex NumbersEquationsQuadratic EquationsSquare Root
2025/5/3

1. Problem Description

We are asked to solve the equation 2+i=xiy\sqrt{2+i} = x - iy for xx and yy, where ii is the imaginary unit (i2=1i^2 = -1).

2. Solution Steps

We square both sides of the equation:
(2+i)2=(xiy)2(\sqrt{2+i})^2 = (x-iy)^2
2+i=x22ixy+(iy)22+i = x^2 - 2ixy + (iy)^2
2+i=x22ixyy22+i = x^2 - 2ixy - y^2
2+i=(x2y2)2xyi2+i = (x^2 - y^2) - 2xyi
We equate the real and imaginary parts:
Real part: x2y2=2x^2 - y^2 = 2
Imaginary part: 2xy=1-2xy = 1, so xy=12xy = -\frac{1}{2}
We have a system of two equations:
x2y2=2x^2 - y^2 = 2
xy=12xy = -\frac{1}{2}
From the second equation, we have y=12xy = -\frac{1}{2x}. Substituting this into the first equation, we get:
x2(12x)2=2x^2 - \left(-\frac{1}{2x}\right)^2 = 2
x214x2=2x^2 - \frac{1}{4x^2} = 2
Multiplying by 4x24x^2, we get:
4x41=8x24x^4 - 1 = 8x^2
4x48x21=04x^4 - 8x^2 - 1 = 0
Let z=x2z = x^2. Then 4z28z1=04z^2 - 8z - 1 = 0.
Using the quadratic formula, we have:
z=(8)±(8)24(4)(1)2(4)=8±64+168=8±808=8±458=2±52z = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(4)(-1)}}{2(4)} = \frac{8 \pm \sqrt{64+16}}{8} = \frac{8 \pm \sqrt{80}}{8} = \frac{8 \pm 4\sqrt{5}}{8} = \frac{2 \pm \sqrt{5}}{2}
Since x2=z>0x^2 = z > 0, we take the positive root:
x2=2+52x^2 = \frac{2+\sqrt{5}}{2}
x=±2+52x = \pm \sqrt{\frac{2+\sqrt{5}}{2}}
Since xy=12xy = -\frac{1}{2}, xx and yy have opposite signs.
If x=2+52x = \sqrt{\frac{2+\sqrt{5}}{2}}, then y=12x=122+52=12(2+5)=14+25y = -\frac{1}{2x} = -\frac{1}{2\sqrt{\frac{2+\sqrt{5}}{2}}} = -\frac{1}{\sqrt{2(2+\sqrt{5})}} = -\frac{1}{\sqrt{4+2\sqrt{5}}}
y=1(5+1)225+254=1(5+1)2=222+5=24(2+5)=12(2+5)=252(45)=252y = -\frac{1}{\sqrt{(\sqrt{5}+1)^2-2\sqrt{5} + 2\sqrt{5} -4} }= -\frac{1}{\sqrt{(\sqrt{5}+1)^2 }} = - \frac{\sqrt{2}}{2\sqrt{2+\sqrt{5}}} = - \sqrt{\frac{2}{4(2+\sqrt{5})}} = - \sqrt{\frac{1}{2(2+\sqrt{5})}} = - \sqrt{\frac{2-\sqrt{5}}{2(4-5)}} = \sqrt{\frac{2-\sqrt{5}}{2}} Note: y=522y = -\sqrt{\frac{\sqrt{5}-2}{2}}
12x=1422+5=12(2+5)=252(45)=522\frac{1}{2x} = \sqrt{\frac{1}{4} * \frac{2}{2+\sqrt{5}}} = \sqrt{\frac{1}{2(2+\sqrt{5})}} = \sqrt{\frac{2-\sqrt{5}}{2(4-5)}} = \sqrt{\frac{\sqrt{5}-2}{2}}
So y=522y = -\sqrt{\frac{\sqrt{5}-2}{2}}
If x=2+52x = - \sqrt{\frac{2+\sqrt{5}}{2}}, then y=522y = \sqrt{\frac{\sqrt{5}-2}{2}}
Therefore, the solutions are:
x=2+52x = \sqrt{\frac{2+\sqrt{5}}{2}}, y=522y = -\sqrt{\frac{\sqrt{5}-2}{2}}
x=2+52x = -\sqrt{\frac{2+\sqrt{5}}{2}}, y=522y = \sqrt{\frac{\sqrt{5}-2}{2}}

3. Final Answer

x=2+52x = \sqrt{\frac{2+\sqrt{5}}{2}}, y=522y = -\sqrt{\frac{\sqrt{5}-2}{2}} or
x=2+52x = -\sqrt{\frac{2+\sqrt{5}}{2}}, y=522y = \sqrt{\frac{\sqrt{5}-2}{2}}

Related problems in "Algebra"

Solve the system of equations: $x^2 + y^2 = 5$ $y = 3x - 5$

Systems of EquationsQuadratic EquationsSubstitutionSolving Equations
2025/5/4

We are given the following system of equations: $x^2 + y^2 = 29$ $3x^2 + 25y^2 = 100$ We need to sol...

Systems of EquationsSolving EquationsSquare RootsVariables
2025/5/4

We are given a system of two equations with two variables, $x$ and $y$: $x - y = -1$ $-1 = x^2 + 1$ ...

Systems of EquationsComplex NumbersQuadratic EquationsVariables
2025/5/4

We are given two equations: $x - y = -1$ $-1 = x^3 + 1$ We need to solve for $x$ and $y$.

Systems of EquationsCubic EquationsSolving EquationsCube Root
2025/5/4

Solve the following system of equations: $x^2 + y^2 = 41$ $x^2 - y = 41$

Systems of EquationsSubstitutionQuadratic EquationsSolution Sets
2025/5/4

We are given a system of two equations: $x^2 + y^2 = 5$ $y = 3x - 5$ We need to find the solutions $...

System of EquationsSubstitution MethodQuadratic EquationsSolving Equations
2025/5/4

We are given a system of two equations: $x^2 + y^2 = 10$ $x^2 - y^2 = 10$ We need to find the values...

Systems of EquationsElimination MethodVariablesSolutions
2025/5/4

The problem is to solve the equation $4x^2 - 3^2 = 10$ for $x$.

Quadratic EquationsSolving EquationsExponentsSquare Roots
2025/5/3

Find the intersection points of the graphs of the equations $y = 2x^2 + 3x - 2$ and $y = 2x - 1$.

Quadratic EquationsSystems of EquationsIntersection of CurvesCoordinate Geometry
2025/5/3

Suzi builds L shapes with blocks. An L shape that is 3 blocks high uses 7 blocks. We need to find ho...

Linear EquationsSequencesPattern RecognitionProblem Solving
2025/5/3