We square both sides of the equation:
(2+i)2=(x−iy)2 2+i=x2−2ixy+(iy)2 2+i=x2−2ixy−y2 2+i=(x2−y2)−2xyi We equate the real and imaginary parts:
Real part: x2−y2=2 Imaginary part: −2xy=1, so xy=−21 We have a system of two equations:
x2−y2=2 xy=−21 From the second equation, we have y=−2x1. Substituting this into the first equation, we get: x2−(−2x1)2=2 x2−4x21=2 Multiplying by 4x2, we get: 4x4−1=8x2 4x4−8x2−1=0 Let z=x2. Then 4z2−8z−1=0. Using the quadratic formula, we have:
z=2(4)−(−8)±(−8)2−4(4)(−1)=88±64+16=88±80=88±45=22±5 Since x2=z>0, we take the positive root: x2=22+5 x=±22+5 Since xy=−21, x and y have opposite signs. If x=22+5, then y=−2x1=−222+51=−2(2+5)1=−4+251 y=−(5+1)2−25+25−41=−(5+1)21=−22+52=−4(2+5)2=−2(2+5)1=−2(4−5)2−5=22−5 Note: y=−25−2 2x1=41∗2+52=2(2+5)1=2(4−5)2−5=25−2 So y=−25−2 If x=−22+5, then y=25−2 Therefore, the solutions are:
x=22+5, y=−25−2 x=−22+5, y=25−2