The problem consists of three exercises. Exercise 1 asks to determine the domain of definition of some functions, study the parity of some functions, and calculate the image and pre-images of a function. Exercise 2 asks to solve trigonometric equations and inequalities within specified intervals. Exercise 3 asks to find the domain of a function, verify if it is odd, prove an expression, study variations on intervals, deduce variations on intervals and write the variation table.

AlgebraFunctionsDomainParityTrigonometryTrigonometric EquationsTrigonometric Inequalities
2025/5/6

1. Problem Description

The problem consists of three exercises. Exercise 1 asks to determine the domain of definition of some functions, study the parity of some functions, and calculate the image and pre-images of a function. Exercise 2 asks to solve trigonometric equations and inequalities within specified intervals. Exercise 3 asks to find the domain of a function, verify if it is odd, prove an expression, study variations on intervals, deduce variations on intervals and write the variation table.

2. Solution Steps

Exercise 1:
1) Determine DfD_f for the following functions:
a) f(x)=3xx9f(x) = \frac{3x}{x-9}
The domain is all real numbers except where the denominator is zero.
x9=0x=9x - 9 = 0 \Rightarrow x = 9.
Thus, Df=R{9}D_f = \mathbb{R} \setminus \{9\}.
b) f(x)=1+2xx2+x2f(x) = \frac{1+2x}{x^2 + x - 2}
The domain is all real numbers except where the denominator is zero.
x2+x2=0(x+2)(x1)=0x=2x^2 + x - 2 = 0 \Rightarrow (x+2)(x-1) = 0 \Rightarrow x = -2 or x=1x = 1.
Thus, Df=R{2,1}D_f = \mathbb{R} \setminus \{-2, 1\}.
c) f(x)=3x6f(x) = \sqrt{3x-6}
The domain requires that the expression under the square root be non-negative.
3x603x6x23x - 6 \geq 0 \Rightarrow 3x \geq 6 \Rightarrow x \geq 2.
Thus, Df=[2,+)D_f = [2, +\infty).
d) f(x)=2x1f(x) = \frac{2}{\sqrt{x-1}}
The domain requires that the expression under the square root be positive.
x1>0x>1x - 1 > 0 \Rightarrow x > 1.
Thus, Df=(1,+)D_f = (1, +\infty).
2) Study the parity of the following functions:
a) g(x)=x1x2g(x) = |x| - \frac{1}{x^2}
g(x)=x1(x)2=x1x2=g(x)g(-x) = |-x| - \frac{1}{(-x)^2} = |x| - \frac{1}{x^2} = g(x).
Thus, g(x)g(x) is an even function.
b) h(x)=xx21h(x) = x\sqrt{x^2 - 1}
h(x)=(x)(x)21=xx21=h(x)h(-x) = (-x)\sqrt{(-x)^2 - 1} = -x\sqrt{x^2 - 1} = -h(x).
Thus, h(x)h(x) is an odd function.
3) Given h(x)=2x+5x+1h(x) = \frac{2x+5}{x+1}:
a) Calculate the image of 3 and -2 by the function hh.
h(3)=2(3)+53+1=6+54=114h(3) = \frac{2(3)+5}{3+1} = \frac{6+5}{4} = \frac{11}{4}.
h(2)=2(2)+52+1=4+51=11=1h(-2) = \frac{2(-2)+5}{-2+1} = \frac{-4+5}{-1} = \frac{1}{-1} = -1.
b) Determine the antecedents of number 5 by the function hh.
h(x)=52x+5x+1=52x+5=5(x+1)2x+5=5x+53x=0x=0h(x) = 5 \Rightarrow \frac{2x+5}{x+1} = 5 \Rightarrow 2x+5 = 5(x+1) \Rightarrow 2x+5 = 5x+5 \Rightarrow 3x = 0 \Rightarrow x = 0.
Thus, the antecedent of 5 is
0.
Exercise 3:
1) Determine DfD_f for f(x)=xx21f(x) = \frac{x}{x^2 - 1}
x210x21x1x^2 - 1 \neq 0 \Rightarrow x^2 \neq 1 \Rightarrow x \neq 1 and x1x \neq -1.
Df=R{1,1}D_f = \mathbb{R} \setminus \{-1, 1\}.
2) Verify that ff is an odd function.
f(x)=x(x)21=xx21=xx21=f(x)f(-x) = \frac{-x}{(-x)^2 - 1} = \frac{-x}{x^2 - 1} = - \frac{x}{x^2 - 1} = -f(x).
Thus, ff is an odd function.
3) Show that for all real aa and bb distinct of DfD_f: T=f(a)f(b)ab=ab+1(a21)(b21)T = \frac{f(a) - f(b)}{a - b} = - \frac{ab+1}{(a^2 - 1)(b^2 - 1)}.
f(a)=aa21f(a) = \frac{a}{a^2 - 1} and f(b)=bb21f(b) = \frac{b}{b^2 - 1}.
f(a)f(b)ab=aa21bb21ab=a(b21)b(a21)(a21)(b21)ab=ab2aba2+b(ab)(a21)(b21)=ab(ba)(ab)(ab)(a21)(b21)=(ab)(ab1)(ab)(a21)(b21)=ab+1(a21)(b21)\frac{f(a) - f(b)}{a - b} = \frac{\frac{a}{a^2 - 1} - \frac{b}{b^2 - 1}}{a - b} = \frac{\frac{a(b^2 - 1) - b(a^2 - 1)}{(a^2 - 1)(b^2 - 1)}}{a - b} = \frac{ab^2 - a - ba^2 + b}{(a - b)(a^2 - 1)(b^2 - 1)} = \frac{ab(b - a) - (a - b)}{(a - b)(a^2 - 1)(b^2 - 1)} = \frac{(a - b)(-ab - 1)}{(a - b)(a^2 - 1)(b^2 - 1)} = - \frac{ab + 1}{(a^2 - 1)(b^2 - 1)}.
Exercise 2:
1) Solve the equations in interval I:
a) cos(x)=12\cos(x) = \frac{1}{2}, I=RI = \mathbb{R}.
x=π3+2kπx = \frac{\pi}{3} + 2k\pi or x=π3+2kπx = -\frac{\pi}{3} + 2k\pi, where kZk \in \mathbb{Z}.
b) sin(2xπ3)=sin(π4x)\sin(2x - \frac{\pi}{3}) = \sin(\frac{\pi}{4} - x), I=[0,2π]I = [0, 2\pi].
2xπ3=π4x+2kπ2x - \frac{\pi}{3} = \frac{\pi}{4} - x + 2k\pi or 2xπ3=π(π4x)+2kπ2x - \frac{\pi}{3} = \pi - (\frac{\pi}{4} - x) + 2k\pi.
3x=π4+π3+2kπ=7π12+2kπx=7π36+2kπ33x = \frac{\pi}{4} + \frac{\pi}{3} + 2k\pi = \frac{7\pi}{12} + 2k\pi \Rightarrow x = \frac{7\pi}{36} + \frac{2k\pi}{3}.
xπ3=3π4+2kπx=3π4+π3+2kπ=13π12+2kπx - \frac{\pi}{3} = \frac{3\pi}{4} + 2k\pi \Rightarrow x = \frac{3\pi}{4} + \frac{\pi}{3} + 2k\pi = \frac{13\pi}{12} + 2k\pi.
For k=0k = 0, x=7π36x = \frac{7\pi}{36} and x=13π12x = \frac{13\pi}{12}.
For k=1k = 1, x=7π36+2π3=7π+24π36=31π36x = \frac{7\pi}{36} + \frac{2\pi}{3} = \frac{7\pi + 24\pi}{36} = \frac{31\pi}{36} and x=13π12+2π=13π+24π12=37π12x = \frac{13\pi}{12} + 2\pi = \frac{13\pi + 24\pi}{12} = \frac{37\pi}{12}.
For k=2k = 2, x=7π36+4π3=7π+48π36=55π36x = \frac{7\pi}{36} + \frac{4\pi}{3} = \frac{7\pi + 48\pi}{36} = \frac{55\pi}{36} and x>2πx > 2\pi.
So, x={7π36,31π36,55π36,13π12,37π12}x = \{\frac{7\pi}{36}, \frac{31\pi}{36}, \frac{55\pi}{36}, \frac{13\pi}{12}, \frac{37\pi}{12}\}.
c) cos(2x)=32\cos(2x) = \frac{\sqrt{3}}{2}, I=]π,π]I = ]-\pi, \pi].
2x=π6+2kπ2x = \frac{\pi}{6} + 2k\pi or 2x=π6+2kπ2x = -\frac{\pi}{6} + 2k\pi.
x=π12+kπx = \frac{\pi}{12} + k\pi or x=π12+kπx = -\frac{\pi}{12} + k\pi.
For k=0k = 0, x=π12x = \frac{\pi}{12} and x=π12x = -\frac{\pi}{12}.
For k=1k = 1, x=π12+π=13π12>πx = \frac{\pi}{12} + \pi = \frac{13\pi}{12} > \pi (not in I) and x=π12+π=11π12x = -\frac{\pi}{12} + \pi = \frac{11\pi}{12}.
For k=1k = -1, x=π12π=11π12x = \frac{\pi}{12} - \pi = -\frac{11\pi}{12} and x=π12π=13π12<πx = -\frac{\pi}{12} - \pi = -\frac{13\pi}{12} < -\pi (not in I).
So, x={π12,π12,11π12,11π12}x = \{\frac{\pi}{12}, -\frac{\pi}{12}, \frac{11\pi}{12}, -\frac{11\pi}{12}\}.
2) Solve the inequalities in interval I:
a) sinx12\sin x \geq \frac{1}{2}, I=]π,π]I = ]-\pi, \pi].
π6x5π6\frac{\pi}{6} \leq x \leq \frac{5\pi}{6}.
b) cosx<12\cos x < \frac{1}{2}, I=[0,2π]I = [0, 2\pi].
π3<x<5π3\frac{\pi}{3} < x < \frac{5\pi}{3}.

3. Final Answer

Solutions are provided in the step-by-step explanation above.
---

Related problems in "Algebra"

The problem is to solve the equation $-3x + 3(82) = 5$ for the variable $x$.

Linear EquationsSolving EquationsVariable Isolation
2025/5/6

The problem is to evaluate the expression $5(33) + 2x = 1$. The variable $x$ has been crossed out. T...

Linear EquationsEquation SolvingArithmetic Operations
2025/5/6

We are given a system of two linear equations with two variables, $x$ and $y$. The system is: $5x + ...

Linear EquationsSystem of EquationsElimination MethodSolving for Variables
2025/5/6

We are given the function $f(x) = (x-a)^2(x-b)^2$ and we need to find the value of $f(a+b)$.

FunctionsPolynomialsSubstitution
2025/5/6

We are given the function $f(x) = x^2 - 3x + 4$. We want to find the values of $x$ such that $f(x) =...

Quadratic EquationsFunctionsEquation SolvingAlgebraic Manipulation
2025/5/6

The problem is to solve question 13: If $f(x) = x^3$, find the value of $\frac{f(5) - f(1)}{5-1}$.

FunctionsPolynomialsEvaluation
2025/5/6

We are given a system of two equations: $x^2 + y^2 = 40$ $x^2 - y^2 = 10$ We need to solve for $x$ a...

Systems of EquationsQuadratic EquationsSolving Equations
2025/5/6

The problem consists of multiple parts. We need to solve the problems from question 7 to 13 from the...

FunctionsFunction EvaluationFunction PropertiesTrigonometric Identities
2025/5/6

We are given the function $f(x) = \frac{x-1}{x+1}$. We need to prove that $f(2x) = \frac{3f(x)+1}{f(...

Function PropertiesFunction CompositionAlgebraic Manipulation
2025/5/6

The problem is to solve the equation $0 - 4 = \frac{1}{4}y$ for $y$.

Linear EquationsSolving Equations
2025/5/6