We are asked to simplify two expressions: (1) Given that $x$ is real and $x \ne 0$, simplify the expression $(x - \frac{1}{x})^3 + (x + \frac{1}{x})^3$. (2) Simplify $\frac{log_{10} 125}{log_{10} 25}$.

AlgebraAlgebraic SimplificationLogarithmsExponentsPolynomials
2025/3/19

1. Problem Description

We are asked to simplify two expressions:
(1) Given that xx is real and x0x \ne 0, simplify the expression (x1x)3+(x+1x)3(x - \frac{1}{x})^3 + (x + \frac{1}{x})^3.
(2) Simplify log10125log1025\frac{log_{10} 125}{log_{10} 25}.

2. Solution Steps

(1) Simplify the expression (x1x)3+(x+1x)3(x - \frac{1}{x})^3 + (x + \frac{1}{x})^3.
Recall the formula for (ab)3=a33a2b+3ab2b3(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 and (a+b)3=a3+3a2b+3ab2+b3(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.
(x1x)3=x33x2(1x)+3x(1x)2(1x)3=x33x+3x1x3(x - \frac{1}{x})^3 = x^3 - 3x^2(\frac{1}{x}) + 3x(\frac{1}{x})^2 - (\frac{1}{x})^3 = x^3 - 3x + \frac{3}{x} - \frac{1}{x^3}
(x+1x)3=x3+3x2(1x)+3x(1x)2+(1x)3=x3+3x+3x+1x3(x + \frac{1}{x})^3 = x^3 + 3x^2(\frac{1}{x}) + 3x(\frac{1}{x})^2 + (\frac{1}{x})^3 = x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}
Adding these two expressions:
(x1x)3+(x+1x)3=(x33x+3x1x3)+(x3+3x+3x+1x3)=2x3+6x=2(x3+3x)(x - \frac{1}{x})^3 + (x + \frac{1}{x})^3 = (x^3 - 3x + \frac{3}{x} - \frac{1}{x^3}) + (x^3 + 3x + \frac{3}{x} + \frac{1}{x^3}) = 2x^3 + \frac{6}{x} = 2(x^3 + \frac{3}{x})
(2) Simplify log10125log1025\frac{log_{10} 125}{log_{10} 25}.
Recall that logab=logcblogcalog_a b = \frac{log_c b}{log_c a}.
Using this, we can write log10125log1025=log25125\frac{log_{10} 125}{log_{10} 25} = log_{25} 125.
Since 125=53125 = 5^3 and 25=5225 = 5^2, we can write
log25125=log5253log_{25} 125 = log_{5^2} 5^3.
Recall that logabxy=yblogaxlog_{a^b} x^y = \frac{y}{b} log_a x.
So, log5253=32log55=32(1)=32log_{5^2} 5^3 = \frac{3}{2} log_5 5 = \frac{3}{2}(1) = \frac{3}{2}.

3. Final Answer

(1) 2(x3+3x)2(x^3 + \frac{3}{x})
(2) 32\frac{3}{2}