First, we multiply the numerator and denominator by the conjugate of the denominator, which is 2 3 + 2 2\sqrt{3} + \sqrt{2} 2 3 + 2 : 3 2 − 3 2 3 − 2 ⋅ 2 3 + 2 2 3 + 2 = ( 3 2 − 3 ) ( 2 3 + 2 ) ( 2 3 − 2 ) ( 2 3 + 2 ) \frac{3\sqrt{2} - \sqrt{3}}{2\sqrt{3} - \sqrt{2}} \cdot \frac{2\sqrt{3} + \sqrt{2}}{2\sqrt{3} + \sqrt{2}} = \frac{(3\sqrt{2} - \sqrt{3})(2\sqrt{3} + \sqrt{2})}{(2\sqrt{3} - \sqrt{2})(2\sqrt{3} + \sqrt{2})} 2 3 − 2 3 2 − 3 ⋅ 2 3 + 2 2 3 + 2 = ( 2 3 − 2 ) ( 2 3 + 2 ) ( 3 2 − 3 ) ( 2 3 + 2 ) Now, we expand the numerator and denominator:
Numerator:
( 3 2 − 3 ) ( 2 3 + 2 ) = 3 2 ( 2 3 ) + 3 2 ( 2 ) − 3 ( 2 3 ) − 3 ( 2 ) = 6 6 + 3 ( 2 ) − 2 ( 3 ) − 6 = 6 6 + 6 − 6 − 6 = 5 6 (3\sqrt{2} - \sqrt{3})(2\sqrt{3} + \sqrt{2}) = 3\sqrt{2}(2\sqrt{3}) + 3\sqrt{2}(\sqrt{2}) - \sqrt{3}(2\sqrt{3}) - \sqrt{3}(\sqrt{2}) = 6\sqrt{6} + 3(2) - 2(3) - \sqrt{6} = 6\sqrt{6} + 6 - 6 - \sqrt{6} = 5\sqrt{6} ( 3 2 − 3 ) ( 2 3 + 2 ) = 3 2 ( 2 3 ) + 3 2 ( 2 ) − 3 ( 2 3 ) − 3 ( 2 ) = 6 6 + 3 ( 2 ) − 2 ( 3 ) − 6 = 6 6 + 6 − 6 − 6 = 5 6
Denominator:
( 2 3 − 2 ) ( 2 3 + 2 ) = ( 2 3 ) 2 − ( 2 ) 2 = 4 ( 3 ) − 2 = 12 − 2 = 10 (2\sqrt{3} - \sqrt{2})(2\sqrt{3} + \sqrt{2}) = (2\sqrt{3})^2 - (\sqrt{2})^2 = 4(3) - 2 = 12 - 2 = 10 ( 2 3 − 2 ) ( 2 3 + 2 ) = ( 2 3 ) 2 − ( 2 ) 2 = 4 ( 3 ) − 2 = 12 − 2 = 10
So we have:
5 6 10 = 6 2 \frac{5\sqrt{6}}{10} = \frac{\sqrt{6}}{2} 10 5 6 = 2 6 Now, we want to express 6 2 \frac{\sqrt{6}}{2} 2 6 in the form m n \frac{\sqrt{m}}{\sqrt{n}} n m . Since 2 = 4 2 = \sqrt{4} 2 = 4 , we can write: 6 2 = 6 4 = 6 4 = 3 2 \frac{\sqrt{6}}{2} = \frac{\sqrt{6}}{\sqrt{4}} = \sqrt{\frac{6}{4}} = \sqrt{\frac{3}{2}} 2 6 = 4 6 = 4 6 = 2 3 To avoid a fraction inside the square root, we can manipulate the original expression further:
6 2 = 6 4 ⋅ 4 4 = 6 ⋅ 4 4 = 24 4 = 24 16 \frac{\sqrt{6}}{2} = \frac{\sqrt{6}}{\sqrt{4}} \cdot \frac{\sqrt{4}}{\sqrt{4}} = \frac{\sqrt{6\cdot4}}{4} = \frac{\sqrt{24}}{4} = \frac{\sqrt{24}}{\sqrt{16}} 2 6 = 4 6 ⋅ 4 4 = 4 6 ⋅ 4 = 4 24 = 16 24 This form satisfies the requirement of having whole numbers under the square root. However, looking at the given options, we see that we can directly write
5 6 10 = 25 ⋅ 6 100 = 150 100 \frac{5\sqrt{6}}{10} = \frac{\sqrt{25 \cdot 6}}{\sqrt{100}} = \frac{\sqrt{150}}{\sqrt{100}} 10 5 6 = 100 25 ⋅ 6 = 100 150 So, m = 150 m = 150 m = 150 and n = 100 n = 100 n = 100 .