We are asked to express $\frac{3\sqrt{2}-\sqrt{3}}{2\sqrt{3}-\sqrt{2}}$ in the form $\frac{\sqrt{m}}{\sqrt{n}}$, where $m$ and $n$ are whole numbers.

AlgebraSimplificationRadicalsRationalizationExponents
2025/3/20

1. Problem Description

We are asked to express 323232\frac{3\sqrt{2}-\sqrt{3}}{2\sqrt{3}-\sqrt{2}} in the form mn\frac{\sqrt{m}}{\sqrt{n}}, where mm and nn are whole numbers.

2. Solution Steps

We need to rationalize the denominator of the given expression. Multiply both numerator and denominator by the conjugate of the denominator, which is 23+22\sqrt{3}+\sqrt{2}:
323232=(323)(23+2)(232)(23+2)\frac{3\sqrt{2}-\sqrt{3}}{2\sqrt{3}-\sqrt{2}} = \frac{(3\sqrt{2}-\sqrt{3})(2\sqrt{3}+\sqrt{2})}{(2\sqrt{3}-\sqrt{2})(2\sqrt{3}+\sqrt{2})}
Expanding the numerator:
(323)(23+2)=3223+32232332=66+666=56(3\sqrt{2}-\sqrt{3})(2\sqrt{3}+\sqrt{2}) = 3\sqrt{2} \cdot 2\sqrt{3} + 3\sqrt{2} \cdot \sqrt{2} - \sqrt{3} \cdot 2\sqrt{3} - \sqrt{3} \cdot \sqrt{2} = 6\sqrt{6} + 6 - 6 - \sqrt{6} = 5\sqrt{6}
Expanding the denominator:
(232)(23+2)=(23)2(2)2=432=122=10(2\sqrt{3}-\sqrt{2})(2\sqrt{3}+\sqrt{2}) = (2\sqrt{3})^2 - (\sqrt{2})^2 = 4 \cdot 3 - 2 = 12 - 2 = 10
So the expression becomes:
5610=62=64\frac{5\sqrt{6}}{10} = \frac{\sqrt{6}}{2} = \frac{\sqrt{6}}{\sqrt{4}}
Multiply the numerator and denominator by 55=1\sqrt{\frac{5}{5}} = 1:
56101010=56010\frac{5\sqrt{6}}{10} \cdot \frac{\sqrt{10}}{\sqrt{10}} = \frac{5 \sqrt{60}}{10}.
This step does not help.
Rewriting the expression as 62\frac{\sqrt{6}}{2}:
We want to express this in the form mn\frac{\sqrt{m}}{\sqrt{n}}. We can write 22 as 4\sqrt{4}.
So, 62=64\frac{\sqrt{6}}{2} = \frac{\sqrt{6}}{\sqrt{4}}. This does not match the provided options.
We want to match one of the options. Let us square 5610\frac{5\sqrt{6}}{\sqrt{10}}:
(5610)2=25610=15010=15\left( \frac{5\sqrt{6}}{\sqrt{10}}\right)^2 = \frac{25 \cdot 6}{10} = \frac{150}{10} = 15.
Square root to get 15\sqrt{15}
Let us square the given expression:
(323232)2=1866+31246+2=21661446\left(\frac{3\sqrt{2}-\sqrt{3}}{2\sqrt{3}-\sqrt{2}}\right)^2 = \frac{18 - 6\sqrt{6} + 3}{12 - 4\sqrt{6} + 2} = \frac{21 - 6\sqrt{6}}{14 - 4\sqrt{6}}.
This is not equal to
1
5.
The expression simplifies to 62\frac{\sqrt{6}}{2}, so we want to find which of the answer options is equal to this.
(a) 610=610\frac{\sqrt{6}}{\sqrt{10}} = \frac{\sqrt{6}}{\sqrt{10}}
(b) 150100=256100=5610=62\frac{\sqrt{150}}{\sqrt{100}} = \frac{\sqrt{25 \cdot 6}}{\sqrt{100}} = \frac{5\sqrt{6}}{10} = \frac{\sqrt{6}}{2}
(c) 2610=2610\frac{2\sqrt{6}}{\sqrt{10}} = \frac{2\sqrt{6}}{\sqrt{10}}
(d) 5610=5610\frac{5\sqrt{6}}{\sqrt{10}} = \frac{5\sqrt{6}}{\sqrt{10}}

3. Final Answer

(b) 150100\frac{\sqrt{150}}{\sqrt{100}}

Related problems in "Algebra"

Simplify the expression $\sqrt[3]{192x^3y^5z^{10}}$.

SimplificationRadicalsExponentsAlgebraic Expressions
2025/4/23

The problem asks us to simplify the expression $\frac{1}{(x+1)(x+2)} - \frac{5}{(x+2)(x-3)}$.

Fractional ExpressionsSimplificationAlgebraic ManipulationRational Expressions
2025/4/23

We are given a system of two equations: $\frac{1}{2}y - \frac{1}{2}x = 1$ $x^2 + y^2 = 20$ We need t...

Systems of EquationsQuadratic EquationsSubstitutionSolution Verification
2025/4/23

The problem has two parts. Part 1: Given that $x+3 \ge 7$, show that $x \ge 4$. Part 2: Given that $...

InequalitiesAlgebraic Manipulation
2025/4/23

The problem requires us to analyze the exponential function $f(x) = 3 \cdot 2^x$ and potentially gra...

Exponential FunctionsGraphingFunction Analysis
2025/4/23

The problem presents a sequence of numbers: $-6, -7.2, -8.64, -10.368, ...$ and asks us to identify ...

Sequences and SeriesGeometric SequenceCommon Ratio
2025/4/23

The problem consists of two inequalities. First, given $x+3 \ge 7$, prove that $x \ge 4$. Second, gi...

InequalitiesAlgebraic Manipulation
2025/4/23

We are asked to write the equation of the line in slope-intercept form ($y=mx+b$) for the given prob...

Linear EquationsSlope-Intercept FormWord ProblemsGraphing
2025/4/23

We are asked to find the equation of a line in slope-intercept form, $y = mx + b$, given two points ...

Linear EquationsSlope-intercept formCoordinate Geometry
2025/4/23

The problem requires us to graph the linear equation $y = -\frac{3}{4}x - 4$.

Linear EquationsGraphingSlope-intercept formCoordinate Geometry
2025/4/23