The problem requires us to simplify several complex number expressions, find the quotient of complex numbers in standard form, and find the absolute value and square roots of complex numbers.

AlgebraComplex NumbersComplex Number ArithmeticComplex ConjugateAbsolute ValueSquare Root
2025/5/7

1. Problem Description

The problem requires us to simplify several complex number expressions, find the quotient of complex numbers in standard form, and find the absolute value and square roots of complex numbers.

2. Solution Steps

1a. (5+2i)(8+6i)(5+2i)(8+6i)
Multiply the two complex numbers using the distributive property (FOIL method):
(5)(8)+(5)(6i)+(2i)(8)+(2i)(6i)=40+30i+16i+12i2(5)(8) + (5)(6i) + (2i)(8) + (2i)(6i) = 40 + 30i + 16i + 12i^2
Since i2=1i^2 = -1:
40+46i+12(1)=40+46i12=28+46i40 + 46i + 12(-1) = 40 + 46i - 12 = 28 + 46i
1b. (13+25i)+(12+14i)(\frac{1}{3} + \frac{2}{5}i) + (\frac{1}{2} + \frac{1}{4}i)
Add the real and imaginary parts separately:
(13+12)+(25+14)i=(26+36)+(820+520)i=56+1320i(\frac{1}{3} + \frac{1}{2}) + (\frac{2}{5} + \frac{1}{4})i = (\frac{2}{6} + \frac{3}{6}) + (\frac{8}{20} + \frac{5}{20})i = \frac{5}{6} + \frac{13}{20}i
1c. (73i)+(4+4i)(-7-3i) + (-4+4i)
Add the real and imaginary parts separately:
(74)+(3+4)i=11+i(-7-4) + (-3+4)i = -11 + i
1d. (4+i3)+(62i3)(4+i\sqrt{3}) + (-6-2i\sqrt{3})
Add the real and imaginary parts separately:
(46)+(323)i=2i3(4-6) + (\sqrt{3} - 2\sqrt{3})i = -2 - i\sqrt{3}
1e. (67i)(76i)(6-7i) - (7-6i)
Subtract the real and imaginary parts separately:
(67)+(7(6))i=1+(7+6)i=1i(6-7) + (-7-(-6))i = -1 + (-7+6)i = -1 - i
1f. (12i)2(-1-2i)^2
Square the complex number:
(12i)(12i)=(1)(1)+(1)(2i)+(2i)(1)+(2i)(2i)=1+2i+2i+4i2=1+4i+4(1)=1+4i4=3+4i(-1-2i)(-1-2i) = (-1)(-1) + (-1)(-2i) + (-2i)(-1) + (-2i)(-2i) = 1 + 2i + 2i + 4i^2 = 1 + 4i + 4(-1) = 1 + 4i - 4 = -3 + 4i
1g. (5i)(8i)(-5i)(8i)
Multiply the complex numbers:
(5)(8)(i)(i)=40i2=40(1)=40(-5)(8)(i)(i) = -40i^2 = -40(-1) = 40
2a. 4i32i\frac{4i}{3-2i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 3+2i3+2i:
4i(3+2i)(32i)(3+2i)=12i+8i294i2=12i89+4=8+12i13=813+1213i\frac{4i(3+2i)}{(3-2i)(3+2i)} = \frac{12i + 8i^2}{9 - 4i^2} = \frac{12i - 8}{9 + 4} = \frac{-8 + 12i}{13} = -\frac{8}{13} + \frac{12}{13}i
2b. 2+5i3+7i\frac{2+5i}{3+7i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 37i3-7i:
(2+5i)(37i)(3+7i)(37i)=614i+15i35i2949i2=6+i+359+49=41+i58=4158+158i\frac{(2+5i)(3-7i)}{(3+7i)(3-7i)} = \frac{6 - 14i + 15i - 35i^2}{9 - 49i^2} = \frac{6 + i + 35}{9 + 49} = \frac{41 + i}{58} = \frac{41}{58} + \frac{1}{58}i
2c. 410i3+7i\frac{4-10i}{-3+7i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 37i-3-7i:
(410i)(37i)(3+7i)(37i)=1228i+30i+70i2949i2=12+2i709+49=82+2i58=41+i29=4129+129i\frac{(4-10i)(-3-7i)}{(-3+7i)(-3-7i)} = \frac{-12 - 28i + 30i + 70i^2}{9 - 49i^2} = \frac{-12 + 2i - 70}{9 + 49} = \frac{-82 + 2i}{58} = \frac{-41+i}{29} = -\frac{41}{29} + \frac{1}{29}i
2d. 1i23i\frac{-1-i}{-2-3i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 2+3i-2+3i:
(1i)(2+3i)(23i)(2+3i)=23i+2i3i249i2=2i+34+9=5i13=513113i\frac{(-1-i)(-2+3i)}{(-2-3i)(-2+3i)} = \frac{2 - 3i + 2i - 3i^2}{4 - 9i^2} = \frac{2 - i + 3}{4 + 9} = \frac{5-i}{13} = \frac{5}{13} - \frac{1}{13}i
2e. 3+9i4i\frac{3+9i}{4-i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 4+i4+i:
(3+9i)(4+i)(4i)(4+i)=12+3i+36i+9i216i2=12+39i916+1=3+39i17=317+3917i\frac{(3+9i)(4+i)}{(4-i)(4+i)} = \frac{12 + 3i + 36i + 9i^2}{16 - i^2} = \frac{12 + 39i - 9}{16 + 1} = \frac{3 + 39i}{17} = \frac{3}{17} + \frac{39}{17}i
2f. 4+9i36i\frac{-4+9i}{-3-6i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 3+6i-3+6i:
(4+9i)(3+6i)(36i)(3+6i)=1224i27i+54i2936i2=1251i549+36=4251i45=1417i15=14151715i\frac{(-4+9i)(-3+6i)}{(-3-6i)(-3+6i)} = \frac{12 - 24i - 27i + 54i^2}{9 - 36i^2} = \frac{12 - 51i - 54}{9 + 36} = \frac{-42 - 51i}{45} = \frac{-14 - 17i}{15} = -\frac{14}{15} - \frac{17}{15}i
3a. 3+2i3+2i
Absolute value: 3+2i=32+22=9+4=13|3+2i| = \sqrt{3^2 + 2^2} = \sqrt{9+4} = \sqrt{13}
To find the square root, let 3+2i=a+bi\sqrt{3+2i} = a+bi. Squaring both sides:
3+2i=(a+bi)2=a2+2abib23+2i = (a+bi)^2 = a^2 + 2abi - b^2.
Equating real and imaginary parts: a2b2=3a^2 - b^2 = 3 and 2ab=22ab = 2, so ab=1ab=1. b=1/ab = 1/a.
a21a2=3a^2 - \frac{1}{a^2} = 3. a41=3a2a^4 - 1 = 3a^2. a43a21=0a^4 - 3a^2 - 1 = 0.
a2=3±9+42=3±132a^2 = \frac{3 \pm \sqrt{9+4}}{2} = \frac{3 \pm \sqrt{13}}{2}. Since aa is real, a2=3+132a^2 = \frac{3+\sqrt{13}}{2}.
a=±3+132a = \pm \sqrt{\frac{3+\sqrt{13}}{2}}.
If a=3+132a = \sqrt{\frac{3+\sqrt{13}}{2}}, then b=1a=23+13=2(313)913=2(313)4=3+132=1332b = \frac{1}{a} = \sqrt{\frac{2}{3+\sqrt{13}}} = \sqrt{\frac{2(3-\sqrt{13})}{9-13}} = \sqrt{\frac{2(3-\sqrt{13})}{-4}} = -\sqrt{\frac{-3+\sqrt{13}}{2}} = \sqrt{\frac{\sqrt{13}-3}{2}}. Since ab=1ab=1 they must be of the same sign, so bb should be positive as well.
Square roots are ±(3+132+i1332)\pm(\sqrt{\frac{3+\sqrt{13}}{2}} + i \sqrt{\frac{\sqrt{13}-3}{2}}).
3b. 15+8i15+8i
Absolute value: 15+8i=152+82=225+64=289=17|15+8i| = \sqrt{15^2 + 8^2} = \sqrt{225+64} = \sqrt{289} = 17
To find the square root, let 15+8i=a+bi\sqrt{15+8i} = a+bi. Squaring both sides:
15+8i=(a+bi)2=a2+2abib215+8i = (a+bi)^2 = a^2 + 2abi - b^2.
Equating real and imaginary parts: a2b2=15a^2 - b^2 = 15 and 2ab=82ab = 8, so ab=4ab=4. b=4/ab = 4/a.
a216a2=15a^2 - \frac{16}{a^2} = 15. a416=15a2a^4 - 16 = 15a^2. a415a216=0a^4 - 15a^2 - 16 = 0.
(a216)(a2+1)=0(a^2 - 16)(a^2+1) = 0. So a2=16a^2 = 16 or a2=1a^2 = -1. Since a is real, a2=16a^2 = 16.
a=±4a = \pm 4.
If a=4a = 4, then b=4/4=1b = 4/4 = 1. If a=4a = -4, then b=4/(4)=1b = 4/(-4) = -1.
Square roots are ±(4+i)\pm(4+i).
3c. 6+2i6+2i
Absolute value: 6+2i=62+22=36+4=40=210|6+2i| = \sqrt{6^2 + 2^2} = \sqrt{36+4} = \sqrt{40} = 2\sqrt{10}
Let 6+2i=a+bi\sqrt{6+2i} = a+bi.
6+2i=a2b2+2abi6+2i = a^2-b^2 + 2abi.
a2b2=6a^2-b^2=6 and 2ab=22ab=2, so ab=1ab=1 and b=1/ab = 1/a.
a21/a2=6a^2 - 1/a^2 = 6. a41=6a2a^4-1 = 6a^2, so a46a21=0a^4-6a^2-1=0.
a2=6±36+42=6±402=6±2102=3±10a^2 = \frac{6 \pm \sqrt{36+4}}{2} = \frac{6 \pm \sqrt{40}}{2} = \frac{6 \pm 2\sqrt{10}}{2} = 3 \pm \sqrt{10}.
Since aa is real, a2=3+10a^2 = 3 + \sqrt{10}. Thus a=±3+10a = \pm \sqrt{3+\sqrt{10}}.
Then b=1/a=±13+10=±310910=±103b = 1/a = \pm \sqrt{\frac{1}{3+\sqrt{10}}} = \pm \sqrt{\frac{3-\sqrt{10}}{9-10}} = \pm \sqrt{\sqrt{10}-3}.
Square roots are ±(3+10+i103)\pm(\sqrt{3+\sqrt{10}} + i \sqrt{\sqrt{10}-3}).

3. Final Answer

1a. 28+46i28+46i
1b. 56+1320i\frac{5}{6} + \frac{13}{20}i
1c. 11+i-11+i
1d. 2i3-2 - i\sqrt{3}
1e. 1i-1-i
1f. 3+4i-3+4i
1g. 4040
2a. 813+1213i-\frac{8}{13} + \frac{12}{13}i
2b. 4158+158i\frac{41}{58} + \frac{1}{58}i
2c. 4129+129i-\frac{41}{29} + \frac{1}{29}i
2d. 513113i\frac{5}{13} - \frac{1}{13}i
2e. 317+3917i\frac{3}{17} + \frac{39}{17}i
2f. 14151715i-\frac{14}{15} - \frac{17}{15}i
3a. Absolute value: 13\sqrt{13}. Square roots: ±(3+132+i1332)\pm(\sqrt{\frac{3+\sqrt{13}}{2}} + i \sqrt{\frac{\sqrt{13}-3}{2}})
3b. Absolute value: 1717. Square roots: ±(4+i)\pm(4+i)
3c. Absolute value: 2102\sqrt{10}. Square roots: ±(3+10+i103)\pm(\sqrt{3+\sqrt{10}} + i \sqrt{\sqrt{10}-3})

Related problems in "Algebra"

We are asked to expand the expression $y = (-2x^4 - 3)(-2x^2 + 1)$.

Polynomial ExpansionDistributive PropertyFOIL method
2025/5/8

We are given the function $f(x) = x^2(-3x^2 - 2)$ and need to simplify it by expanding the expressio...

PolynomialsSimplificationExponents
2025/5/8

We are given a system of two equations: $x - y = -1$ $y = x^2 + 1$ We need to solve for $x$ and $y$.

Systems of EquationsSubstitutionQuadratic EquationsSolving Equations
2025/5/8

We are given a system of two equations: $x^2 + y^2 = 40$ $x^2 - y^2 = 10$ We are asked to solve for ...

Systems of EquationsQuadratic EquationsSolving Equations
2025/5/8

We are given a system of two equations with two variables, $x$ and $y$. The equations are: $x^2 + y^...

Systems of EquationsSolving EquationsVariablesExponents
2025/5/8

The problem asks to solve the inequality $4 + \frac{3}{4}(x+2) \le \frac{3}{8}x + 1$.

InequalitiesLinear InequalitiesSolving Inequalities
2025/5/8

We are asked to rationalize the denominator and simplify the given expressions: a. $\frac{3}{\sqrt{2...

RationalizationRadicalsSimplificationAlgebraic Manipulation
2025/5/7

We are asked to factor the expression $\sin^2 \theta - \sin \theta - 12$.

TrigonometryFactoringQuadratic Equations
2025/5/7

The problem asks us to simplify the algebraic expression $4b - 3(4 - 2b)$.

Algebraic simplificationLinear expressionsDistributionCombining like terms
2025/5/7

The problem asks us to analyze the given exponential function $y = 5 \cdot (\frac{1}{2})^x$ and grap...

Exponential FunctionsGraphingFunction Analysis
2025/5/7