The problem requires us to simplify several complex number expressions, find the quotient of complex numbers in standard form, and find the absolute value and square roots of complex numbers.

AlgebraComplex NumbersComplex Number ArithmeticComplex ConjugateAbsolute ValueSquare Root
2025/5/7

1. Problem Description

The problem requires us to simplify several complex number expressions, find the quotient of complex numbers in standard form, and find the absolute value and square roots of complex numbers.

2. Solution Steps

1a. (5+2i)(8+6i)(5+2i)(8+6i)
Multiply the two complex numbers using the distributive property (FOIL method):
(5)(8)+(5)(6i)+(2i)(8)+(2i)(6i)=40+30i+16i+12i2(5)(8) + (5)(6i) + (2i)(8) + (2i)(6i) = 40 + 30i + 16i + 12i^2
Since i2=1i^2 = -1:
40+46i+12(1)=40+46i12=28+46i40 + 46i + 12(-1) = 40 + 46i - 12 = 28 + 46i
1b. (13+25i)+(12+14i)(\frac{1}{3} + \frac{2}{5}i) + (\frac{1}{2} + \frac{1}{4}i)
Add the real and imaginary parts separately:
(13+12)+(25+14)i=(26+36)+(820+520)i=56+1320i(\frac{1}{3} + \frac{1}{2}) + (\frac{2}{5} + \frac{1}{4})i = (\frac{2}{6} + \frac{3}{6}) + (\frac{8}{20} + \frac{5}{20})i = \frac{5}{6} + \frac{13}{20}i
1c. (73i)+(4+4i)(-7-3i) + (-4+4i)
Add the real and imaginary parts separately:
(74)+(3+4)i=11+i(-7-4) + (-3+4)i = -11 + i
1d. (4+i3)+(62i3)(4+i\sqrt{3}) + (-6-2i\sqrt{3})
Add the real and imaginary parts separately:
(46)+(323)i=2i3(4-6) + (\sqrt{3} - 2\sqrt{3})i = -2 - i\sqrt{3}
1e. (67i)(76i)(6-7i) - (7-6i)
Subtract the real and imaginary parts separately:
(67)+(7(6))i=1+(7+6)i=1i(6-7) + (-7-(-6))i = -1 + (-7+6)i = -1 - i
1f. (12i)2(-1-2i)^2
Square the complex number:
(12i)(12i)=(1)(1)+(1)(2i)+(2i)(1)+(2i)(2i)=1+2i+2i+4i2=1+4i+4(1)=1+4i4=3+4i(-1-2i)(-1-2i) = (-1)(-1) + (-1)(-2i) + (-2i)(-1) + (-2i)(-2i) = 1 + 2i + 2i + 4i^2 = 1 + 4i + 4(-1) = 1 + 4i - 4 = -3 + 4i
1g. (5i)(8i)(-5i)(8i)
Multiply the complex numbers:
(5)(8)(i)(i)=40i2=40(1)=40(-5)(8)(i)(i) = -40i^2 = -40(-1) = 40
2a. 4i32i\frac{4i}{3-2i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 3+2i3+2i:
4i(3+2i)(32i)(3+2i)=12i+8i294i2=12i89+4=8+12i13=813+1213i\frac{4i(3+2i)}{(3-2i)(3+2i)} = \frac{12i + 8i^2}{9 - 4i^2} = \frac{12i - 8}{9 + 4} = \frac{-8 + 12i}{13} = -\frac{8}{13} + \frac{12}{13}i
2b. 2+5i3+7i\frac{2+5i}{3+7i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 37i3-7i:
(2+5i)(37i)(3+7i)(37i)=614i+15i35i2949i2=6+i+359+49=41+i58=4158+158i\frac{(2+5i)(3-7i)}{(3+7i)(3-7i)} = \frac{6 - 14i + 15i - 35i^2}{9 - 49i^2} = \frac{6 + i + 35}{9 + 49} = \frac{41 + i}{58} = \frac{41}{58} + \frac{1}{58}i
2c. 410i3+7i\frac{4-10i}{-3+7i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 37i-3-7i:
(410i)(37i)(3+7i)(37i)=1228i+30i+70i2949i2=12+2i709+49=82+2i58=41+i29=4129+129i\frac{(4-10i)(-3-7i)}{(-3+7i)(-3-7i)} = \frac{-12 - 28i + 30i + 70i^2}{9 - 49i^2} = \frac{-12 + 2i - 70}{9 + 49} = \frac{-82 + 2i}{58} = \frac{-41+i}{29} = -\frac{41}{29} + \frac{1}{29}i
2d. 1i23i\frac{-1-i}{-2-3i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 2+3i-2+3i:
(1i)(2+3i)(23i)(2+3i)=23i+2i3i249i2=2i+34+9=5i13=513113i\frac{(-1-i)(-2+3i)}{(-2-3i)(-2+3i)} = \frac{2 - 3i + 2i - 3i^2}{4 - 9i^2} = \frac{2 - i + 3}{4 + 9} = \frac{5-i}{13} = \frac{5}{13} - \frac{1}{13}i
2e. 3+9i4i\frac{3+9i}{4-i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 4+i4+i:
(3+9i)(4+i)(4i)(4+i)=12+3i+36i+9i216i2=12+39i916+1=3+39i17=317+3917i\frac{(3+9i)(4+i)}{(4-i)(4+i)} = \frac{12 + 3i + 36i + 9i^2}{16 - i^2} = \frac{12 + 39i - 9}{16 + 1} = \frac{3 + 39i}{17} = \frac{3}{17} + \frac{39}{17}i
2f. 4+9i36i\frac{-4+9i}{-3-6i}
Multiply the numerator and denominator by the conjugate of the denominator, which is 3+6i-3+6i:
(4+9i)(3+6i)(36i)(3+6i)=1224i27i+54i2936i2=1251i549+36=4251i45=1417i15=14151715i\frac{(-4+9i)(-3+6i)}{(-3-6i)(-3+6i)} = \frac{12 - 24i - 27i + 54i^2}{9 - 36i^2} = \frac{12 - 51i - 54}{9 + 36} = \frac{-42 - 51i}{45} = \frac{-14 - 17i}{15} = -\frac{14}{15} - \frac{17}{15}i
3a. 3+2i3+2i
Absolute value: 3+2i=32+22=9+4=13|3+2i| = \sqrt{3^2 + 2^2} = \sqrt{9+4} = \sqrt{13}
To find the square root, let 3+2i=a+bi\sqrt{3+2i} = a+bi. Squaring both sides:
3+2i=(a+bi)2=a2+2abib23+2i = (a+bi)^2 = a^2 + 2abi - b^2.
Equating real and imaginary parts: a2b2=3a^2 - b^2 = 3 and 2ab=22ab = 2, so ab=1ab=1. b=1/ab = 1/a.
a21a2=3a^2 - \frac{1}{a^2} = 3. a41=3a2a^4 - 1 = 3a^2. a43a21=0a^4 - 3a^2 - 1 = 0.
a2=3±9+42=3±132a^2 = \frac{3 \pm \sqrt{9+4}}{2} = \frac{3 \pm \sqrt{13}}{2}. Since aa is real, a2=3+132a^2 = \frac{3+\sqrt{13}}{2}.
a=±3+132a = \pm \sqrt{\frac{3+\sqrt{13}}{2}}.
If a=3+132a = \sqrt{\frac{3+\sqrt{13}}{2}}, then b=1a=23+13=2(313)913=2(313)4=3+132=1332b = \frac{1}{a} = \sqrt{\frac{2}{3+\sqrt{13}}} = \sqrt{\frac{2(3-\sqrt{13})}{9-13}} = \sqrt{\frac{2(3-\sqrt{13})}{-4}} = -\sqrt{\frac{-3+\sqrt{13}}{2}} = \sqrt{\frac{\sqrt{13}-3}{2}}. Since ab=1ab=1 they must be of the same sign, so bb should be positive as well.
Square roots are ±(3+132+i1332)\pm(\sqrt{\frac{3+\sqrt{13}}{2}} + i \sqrt{\frac{\sqrt{13}-3}{2}}).
3b. 15+8i15+8i
Absolute value: 15+8i=152+82=225+64=289=17|15+8i| = \sqrt{15^2 + 8^2} = \sqrt{225+64} = \sqrt{289} = 17
To find the square root, let 15+8i=a+bi\sqrt{15+8i} = a+bi. Squaring both sides:
15+8i=(a+bi)2=a2+2abib215+8i = (a+bi)^2 = a^2 + 2abi - b^2.
Equating real and imaginary parts: a2b2=15a^2 - b^2 = 15 and 2ab=82ab = 8, so ab=4ab=4. b=4/ab = 4/a.
a216a2=15a^2 - \frac{16}{a^2} = 15. a416=15a2a^4 - 16 = 15a^2. a415a216=0a^4 - 15a^2 - 16 = 0.
(a216)(a2+1)=0(a^2 - 16)(a^2+1) = 0. So a2=16a^2 = 16 or a2=1a^2 = -1. Since a is real, a2=16a^2 = 16.
a=±4a = \pm 4.
If a=4a = 4, then b=4/4=1b = 4/4 = 1. If a=4a = -4, then b=4/(4)=1b = 4/(-4) = -1.
Square roots are ±(4+i)\pm(4+i).
3c. 6+2i6+2i
Absolute value: 6+2i=62+22=36+4=40=210|6+2i| = \sqrt{6^2 + 2^2} = \sqrt{36+4} = \sqrt{40} = 2\sqrt{10}
Let 6+2i=a+bi\sqrt{6+2i} = a+bi.
6+2i=a2b2+2abi6+2i = a^2-b^2 + 2abi.
a2b2=6a^2-b^2=6 and 2ab=22ab=2, so ab=1ab=1 and b=1/ab = 1/a.
a21/a2=6a^2 - 1/a^2 = 6. a41=6a2a^4-1 = 6a^2, so a46a21=0a^4-6a^2-1=0.
a2=6±36+42=6±402=6±2102=3±10a^2 = \frac{6 \pm \sqrt{36+4}}{2} = \frac{6 \pm \sqrt{40}}{2} = \frac{6 \pm 2\sqrt{10}}{2} = 3 \pm \sqrt{10}.
Since aa is real, a2=3+10a^2 = 3 + \sqrt{10}. Thus a=±3+10a = \pm \sqrt{3+\sqrt{10}}.
Then b=1/a=±13+10=±310910=±103b = 1/a = \pm \sqrt{\frac{1}{3+\sqrt{10}}} = \pm \sqrt{\frac{3-\sqrt{10}}{9-10}} = \pm \sqrt{\sqrt{10}-3}.
Square roots are ±(3+10+i103)\pm(\sqrt{3+\sqrt{10}} + i \sqrt{\sqrt{10}-3}).

3. Final Answer

1a. 28+46i28+46i
1b. 56+1320i\frac{5}{6} + \frac{13}{20}i
1c. 11+i-11+i
1d. 2i3-2 - i\sqrt{3}
1e. 1i-1-i
1f. 3+4i-3+4i
1g. 4040
2a. 813+1213i-\frac{8}{13} + \frac{12}{13}i
2b. 4158+158i\frac{41}{58} + \frac{1}{58}i
2c. 4129+129i-\frac{41}{29} + \frac{1}{29}i
2d. 513113i\frac{5}{13} - \frac{1}{13}i
2e. 317+3917i\frac{3}{17} + \frac{39}{17}i
2f. 14151715i-\frac{14}{15} - \frac{17}{15}i
3a. Absolute value: 13\sqrt{13}. Square roots: ±(3+132+i1332)\pm(\sqrt{\frac{3+\sqrt{13}}{2}} + i \sqrt{\frac{\sqrt{13}-3}{2}})
3b. Absolute value: 1717. Square roots: ±(4+i)\pm(4+i)
3c. Absolute value: 2102\sqrt{10}. Square roots: ±(3+10+i103)\pm(\sqrt{3+\sqrt{10}} + i \sqrt{\sqrt{10}-3})

Related problems in "Algebra"

The problem states that four numbers are in the ratio 11:19:5:7. The sum of these four numbers is 22...

Ratio and ProportionLinear EquationsWord Problem
2025/7/4

The problem states that four numbers are in the ratio 11:19:5:7. The sum of these four numbers is 2...

Ratio and ProportionLinear EquationsProblem Solving
2025/7/4

The sum of two numbers $p$ and $m$ is 12, and $p^3 + m^3 = 360$. We need to find the value of $pm$.

Algebraic EquationsPolynomialsFactoringProblem Solving
2025/7/4

If the selling price of a bed is 2 times its initial cost price, and the profit will be 7 times the ...

Profit and LossPercentageWord Problem
2025/7/4

The problem is to find the value of $(a+b)^2$ given that $a+b=33$ and $a-b=37$.

Algebraic ExpressionsSubstitutionExponents
2025/7/4

The problem asks us to find the value of $k$ for the quadratic equation $kx^2 - 4x + 1 = 0$ such tha...

Quadratic EquationsDiscriminantRoots of Equations
2025/7/4

Two numbers are in the ratio $7:11$. If the first number is increased by 10 and the second number is...

Ratio and ProportionLinear Equations
2025/7/4

Four numbers are in the ratio 11:19:5:7. The sum of these four numbers is 2289. Find the sum of the ...

Ratio and ProportionLinear Equations
2025/7/4

We are given the equation $\frac{kz}{a} - t$ and asked to make $k$ the subject. We need to isolate $...

Equation SolvingVariable IsolationLinear Equations
2025/7/4

We need to solve the provided equations for $x$. The equations are: 21. $x^2 = B$ 22. $x^2 + A = B$ ...

EquationsSolving EquationsQuadratic EquationsSquare Roots
2025/7/4