1a. ( 5 + 2 i ) ( 8 + 6 i ) (5+2i)(8+6i) ( 5 + 2 i ) ( 8 + 6 i ) Multiply the two complex numbers using the distributive property (FOIL method):
( 5 ) ( 8 ) + ( 5 ) ( 6 i ) + ( 2 i ) ( 8 ) + ( 2 i ) ( 6 i ) = 40 + 30 i + 16 i + 12 i 2 (5)(8) + (5)(6i) + (2i)(8) + (2i)(6i) = 40 + 30i + 16i + 12i^2 ( 5 ) ( 8 ) + ( 5 ) ( 6 i ) + ( 2 i ) ( 8 ) + ( 2 i ) ( 6 i ) = 40 + 30 i + 16 i + 12 i 2 Since i 2 = − 1 i^2 = -1 i 2 = − 1 : 40 + 46 i + 12 ( − 1 ) = 40 + 46 i − 12 = 28 + 46 i 40 + 46i + 12(-1) = 40 + 46i - 12 = 28 + 46i 40 + 46 i + 12 ( − 1 ) = 40 + 46 i − 12 = 28 + 46 i
1b. ( 1 3 + 2 5 i ) + ( 1 2 + 1 4 i ) (\frac{1}{3} + \frac{2}{5}i) + (\frac{1}{2} + \frac{1}{4}i) ( 3 1 + 5 2 i ) + ( 2 1 + 4 1 i ) Add the real and imaginary parts separately:
( 1 3 + 1 2 ) + ( 2 5 + 1 4 ) i = ( 2 6 + 3 6 ) + ( 8 20 + 5 20 ) i = 5 6 + 13 20 i (\frac{1}{3} + \frac{1}{2}) + (\frac{2}{5} + \frac{1}{4})i = (\frac{2}{6} + \frac{3}{6}) + (\frac{8}{20} + \frac{5}{20})i = \frac{5}{6} + \frac{13}{20}i ( 3 1 + 2 1 ) + ( 5 2 + 4 1 ) i = ( 6 2 + 6 3 ) + ( 20 8 + 20 5 ) i = 6 5 + 20 13 i
1c. ( − 7 − 3 i ) + ( − 4 + 4 i ) (-7-3i) + (-4+4i) ( − 7 − 3 i ) + ( − 4 + 4 i ) Add the real and imaginary parts separately:
( − 7 − 4 ) + ( − 3 + 4 ) i = − 11 + i (-7-4) + (-3+4)i = -11 + i ( − 7 − 4 ) + ( − 3 + 4 ) i = − 11 + i
1d. ( 4 + i 3 ) + ( − 6 − 2 i 3 ) (4+i\sqrt{3}) + (-6-2i\sqrt{3}) ( 4 + i 3 ) + ( − 6 − 2 i 3 ) Add the real and imaginary parts separately:
( 4 − 6 ) + ( 3 − 2 3 ) i = − 2 − i 3 (4-6) + (\sqrt{3} - 2\sqrt{3})i = -2 - i\sqrt{3} ( 4 − 6 ) + ( 3 − 2 3 ) i = − 2 − i 3
1e. ( 6 − 7 i ) − ( 7 − 6 i ) (6-7i) - (7-6i) ( 6 − 7 i ) − ( 7 − 6 i ) Subtract the real and imaginary parts separately:
( 6 − 7 ) + ( − 7 − ( − 6 ) ) i = − 1 + ( − 7 + 6 ) i = − 1 − i (6-7) + (-7-(-6))i = -1 + (-7+6)i = -1 - i ( 6 − 7 ) + ( − 7 − ( − 6 )) i = − 1 + ( − 7 + 6 ) i = − 1 − i
1f. ( − 1 − 2 i ) 2 (-1-2i)^2 ( − 1 − 2 i ) 2 Square the complex number:
( − 1 − 2 i ) ( − 1 − 2 i ) = ( − 1 ) ( − 1 ) + ( − 1 ) ( − 2 i ) + ( − 2 i ) ( − 1 ) + ( − 2 i ) ( − 2 i ) = 1 + 2 i + 2 i + 4 i 2 = 1 + 4 i + 4 ( − 1 ) = 1 + 4 i − 4 = − 3 + 4 i (-1-2i)(-1-2i) = (-1)(-1) + (-1)(-2i) + (-2i)(-1) + (-2i)(-2i) = 1 + 2i + 2i + 4i^2 = 1 + 4i + 4(-1) = 1 + 4i - 4 = -3 + 4i ( − 1 − 2 i ) ( − 1 − 2 i ) = ( − 1 ) ( − 1 ) + ( − 1 ) ( − 2 i ) + ( − 2 i ) ( − 1 ) + ( − 2 i ) ( − 2 i ) = 1 + 2 i + 2 i + 4 i 2 = 1 + 4 i + 4 ( − 1 ) = 1 + 4 i − 4 = − 3 + 4 i
1g. ( − 5 i ) ( 8 i ) (-5i)(8i) ( − 5 i ) ( 8 i ) Multiply the complex numbers:
( − 5 ) ( 8 ) ( i ) ( i ) = − 40 i 2 = − 40 ( − 1 ) = 40 (-5)(8)(i)(i) = -40i^2 = -40(-1) = 40 ( − 5 ) ( 8 ) ( i ) ( i ) = − 40 i 2 = − 40 ( − 1 ) = 40
2a. 4 i 3 − 2 i \frac{4i}{3-2i} 3 − 2 i 4 i Multiply the numerator and denominator by the conjugate of the denominator, which is 3 + 2 i 3+2i 3 + 2 i : 4 i ( 3 + 2 i ) ( 3 − 2 i ) ( 3 + 2 i ) = 12 i + 8 i 2 9 − 4 i 2 = 12 i − 8 9 + 4 = − 8 + 12 i 13 = − 8 13 + 12 13 i \frac{4i(3+2i)}{(3-2i)(3+2i)} = \frac{12i + 8i^2}{9 - 4i^2} = \frac{12i - 8}{9 + 4} = \frac{-8 + 12i}{13} = -\frac{8}{13} + \frac{12}{13}i ( 3 − 2 i ) ( 3 + 2 i ) 4 i ( 3 + 2 i ) = 9 − 4 i 2 12 i + 8 i 2 = 9 + 4 12 i − 8 = 13 − 8 + 12 i = − 13 8 + 13 12 i
2b. 2 + 5 i 3 + 7 i \frac{2+5i}{3+7i} 3 + 7 i 2 + 5 i Multiply the numerator and denominator by the conjugate of the denominator, which is 3 − 7 i 3-7i 3 − 7 i : ( 2 + 5 i ) ( 3 − 7 i ) ( 3 + 7 i ) ( 3 − 7 i ) = 6 − 14 i + 15 i − 35 i 2 9 − 49 i 2 = 6 + i + 35 9 + 49 = 41 + i 58 = 41 58 + 1 58 i \frac{(2+5i)(3-7i)}{(3+7i)(3-7i)} = \frac{6 - 14i + 15i - 35i^2}{9 - 49i^2} = \frac{6 + i + 35}{9 + 49} = \frac{41 + i}{58} = \frac{41}{58} + \frac{1}{58}i ( 3 + 7 i ) ( 3 − 7 i ) ( 2 + 5 i ) ( 3 − 7 i ) = 9 − 49 i 2 6 − 14 i + 15 i − 35 i 2 = 9 + 49 6 + i + 35 = 58 41 + i = 58 41 + 58 1 i
2c. 4 − 10 i − 3 + 7 i \frac{4-10i}{-3+7i} − 3 + 7 i 4 − 10 i Multiply the numerator and denominator by the conjugate of the denominator, which is − 3 − 7 i -3-7i − 3 − 7 i : ( 4 − 10 i ) ( − 3 − 7 i ) ( − 3 + 7 i ) ( − 3 − 7 i ) = − 12 − 28 i + 30 i + 70 i 2 9 − 49 i 2 = − 12 + 2 i − 70 9 + 49 = − 82 + 2 i 58 = − 41 + i 29 = − 41 29 + 1 29 i \frac{(4-10i)(-3-7i)}{(-3+7i)(-3-7i)} = \frac{-12 - 28i + 30i + 70i^2}{9 - 49i^2} = \frac{-12 + 2i - 70}{9 + 49} = \frac{-82 + 2i}{58} = \frac{-41+i}{29} = -\frac{41}{29} + \frac{1}{29}i ( − 3 + 7 i ) ( − 3 − 7 i ) ( 4 − 10 i ) ( − 3 − 7 i ) = 9 − 49 i 2 − 12 − 28 i + 30 i + 70 i 2 = 9 + 49 − 12 + 2 i − 70 = 58 − 82 + 2 i = 29 − 41 + i = − 29 41 + 29 1 i
2d. − 1 − i − 2 − 3 i \frac{-1-i}{-2-3i} − 2 − 3 i − 1 − i Multiply the numerator and denominator by the conjugate of the denominator, which is − 2 + 3 i -2+3i − 2 + 3 i : ( − 1 − i ) ( − 2 + 3 i ) ( − 2 − 3 i ) ( − 2 + 3 i ) = 2 − 3 i + 2 i − 3 i 2 4 − 9 i 2 = 2 − i + 3 4 + 9 = 5 − i 13 = 5 13 − 1 13 i \frac{(-1-i)(-2+3i)}{(-2-3i)(-2+3i)} = \frac{2 - 3i + 2i - 3i^2}{4 - 9i^2} = \frac{2 - i + 3}{4 + 9} = \frac{5-i}{13} = \frac{5}{13} - \frac{1}{13}i ( − 2 − 3 i ) ( − 2 + 3 i ) ( − 1 − i ) ( − 2 + 3 i ) = 4 − 9 i 2 2 − 3 i + 2 i − 3 i 2 = 4 + 9 2 − i + 3 = 13 5 − i = 13 5 − 13 1 i
2e. 3 + 9 i 4 − i \frac{3+9i}{4-i} 4 − i 3 + 9 i Multiply the numerator and denominator by the conjugate of the denominator, which is 4 + i 4+i 4 + i : ( 3 + 9 i ) ( 4 + i ) ( 4 − i ) ( 4 + i ) = 12 + 3 i + 36 i + 9 i 2 16 − i 2 = 12 + 39 i − 9 16 + 1 = 3 + 39 i 17 = 3 17 + 39 17 i \frac{(3+9i)(4+i)}{(4-i)(4+i)} = \frac{12 + 3i + 36i + 9i^2}{16 - i^2} = \frac{12 + 39i - 9}{16 + 1} = \frac{3 + 39i}{17} = \frac{3}{17} + \frac{39}{17}i ( 4 − i ) ( 4 + i ) ( 3 + 9 i ) ( 4 + i ) = 16 − i 2 12 + 3 i + 36 i + 9 i 2 = 16 + 1 12 + 39 i − 9 = 17 3 + 39 i = 17 3 + 17 39 i
2f. − 4 + 9 i − 3 − 6 i \frac{-4+9i}{-3-6i} − 3 − 6 i − 4 + 9 i Multiply the numerator and denominator by the conjugate of the denominator, which is − 3 + 6 i -3+6i − 3 + 6 i : ( − 4 + 9 i ) ( − 3 + 6 i ) ( − 3 − 6 i ) ( − 3 + 6 i ) = 12 − 24 i − 27 i + 54 i 2 9 − 36 i 2 = 12 − 51 i − 54 9 + 36 = − 42 − 51 i 45 = − 14 − 17 i 15 = − 14 15 − 17 15 i \frac{(-4+9i)(-3+6i)}{(-3-6i)(-3+6i)} = \frac{12 - 24i - 27i + 54i^2}{9 - 36i^2} = \frac{12 - 51i - 54}{9 + 36} = \frac{-42 - 51i}{45} = \frac{-14 - 17i}{15} = -\frac{14}{15} - \frac{17}{15}i ( − 3 − 6 i ) ( − 3 + 6 i ) ( − 4 + 9 i ) ( − 3 + 6 i ) = 9 − 36 i 2 12 − 24 i − 27 i + 54 i 2 = 9 + 36 12 − 51 i − 54 = 45 − 42 − 51 i = 15 − 14 − 17 i = − 15 14 − 15 17 i
Absolute value: ∣ 3 + 2 i ∣ = 3 2 + 2 2 = 9 + 4 = 13 |3+2i| = \sqrt{3^2 + 2^2} = \sqrt{9+4} = \sqrt{13} ∣3 + 2 i ∣ = 3 2 + 2 2 = 9 + 4 = 13 To find the square root, let 3 + 2 i = a + b i \sqrt{3+2i} = a+bi 3 + 2 i = a + bi . Squaring both sides: 3 + 2 i = ( a + b i ) 2 = a 2 + 2 a b i − b 2 3+2i = (a+bi)^2 = a^2 + 2abi - b^2 3 + 2 i = ( a + bi ) 2 = a 2 + 2 abi − b 2 . Equating real and imaginary parts: a 2 − b 2 = 3 a^2 - b^2 = 3 a 2 − b 2 = 3 and 2 a b = 2 2ab = 2 2 ab = 2 , so a b = 1 ab=1 ab = 1 . b = 1 / a b = 1/a b = 1/ a . a 2 − 1 a 2 = 3 a^2 - \frac{1}{a^2} = 3 a 2 − a 2 1 = 3 . a 4 − 1 = 3 a 2 a^4 - 1 = 3a^2 a 4 − 1 = 3 a 2 . a 4 − 3 a 2 − 1 = 0 a^4 - 3a^2 - 1 = 0 a 4 − 3 a 2 − 1 = 0 . a 2 = 3 ± 9 + 4 2 = 3 ± 13 2 a^2 = \frac{3 \pm \sqrt{9+4}}{2} = \frac{3 \pm \sqrt{13}}{2} a 2 = 2 3 ± 9 + 4 = 2 3 ± 13 . Since a a a is real, a 2 = 3 + 13 2 a^2 = \frac{3+\sqrt{13}}{2} a 2 = 2 3 + 13 . a = ± 3 + 13 2 a = \pm \sqrt{\frac{3+\sqrt{13}}{2}} a = ± 2 3 + 13 . If a = 3 + 13 2 a = \sqrt{\frac{3+\sqrt{13}}{2}} a = 2 3 + 13 , then b = 1 a = 2 3 + 13 = 2 ( 3 − 13 ) 9 − 13 = 2 ( 3 − 13 ) − 4 = − − 3 + 13 2 = 13 − 3 2 b = \frac{1}{a} = \sqrt{\frac{2}{3+\sqrt{13}}} = \sqrt{\frac{2(3-\sqrt{13})}{9-13}} = \sqrt{\frac{2(3-\sqrt{13})}{-4}} = -\sqrt{\frac{-3+\sqrt{13}}{2}} = \sqrt{\frac{\sqrt{13}-3}{2}} b = a 1 = 3 + 13 2 = 9 − 13 2 ( 3 − 13 ) = − 4 2 ( 3 − 13 ) = − 2 − 3 + 13 = 2 13 − 3 . Since a b = 1 ab=1 ab = 1 they must be of the same sign, so b b b should be positive as well. Square roots are ± ( 3 + 13 2 + i 13 − 3 2 ) \pm(\sqrt{\frac{3+\sqrt{13}}{2}} + i \sqrt{\frac{\sqrt{13}-3}{2}}) ± ( 2 3 + 13 + i 2 13 − 3 ) .
Absolute value: ∣ 15 + 8 i ∣ = 15 2 + 8 2 = 225 + 64 = 289 = 17 |15+8i| = \sqrt{15^2 + 8^2} = \sqrt{225+64} = \sqrt{289} = 17 ∣15 + 8 i ∣ = 1 5 2 + 8 2 = 225 + 64 = 289 = 17 To find the square root, let 15 + 8 i = a + b i \sqrt{15+8i} = a+bi 15 + 8 i = a + bi . Squaring both sides: 15 + 8 i = ( a + b i ) 2 = a 2 + 2 a b i − b 2 15+8i = (a+bi)^2 = a^2 + 2abi - b^2 15 + 8 i = ( a + bi ) 2 = a 2 + 2 abi − b 2 . Equating real and imaginary parts: a 2 − b 2 = 15 a^2 - b^2 = 15 a 2 − b 2 = 15 and 2 a b = 8 2ab = 8 2 ab = 8 , so a b = 4 ab=4 ab = 4 . b = 4 / a b = 4/a b = 4/ a . a 2 − 16 a 2 = 15 a^2 - \frac{16}{a^2} = 15 a 2 − a 2 16 = 15 . a 4 − 16 = 15 a 2 a^4 - 16 = 15a^2 a 4 − 16 = 15 a 2 . a 4 − 15 a 2 − 16 = 0 a^4 - 15a^2 - 16 = 0 a 4 − 15 a 2 − 16 = 0 . ( a 2 − 16 ) ( a 2 + 1 ) = 0 (a^2 - 16)(a^2+1) = 0 ( a 2 − 16 ) ( a 2 + 1 ) = 0 . So a 2 = 16 a^2 = 16 a 2 = 16 or a 2 = − 1 a^2 = -1 a 2 = − 1 . Since a is real, a 2 = 16 a^2 = 16 a 2 = 16 . If a = 4 a = 4 a = 4 , then b = 4 / 4 = 1 b = 4/4 = 1 b = 4/4 = 1 . If a = − 4 a = -4 a = − 4 , then b = 4 / ( − 4 ) = − 1 b = 4/(-4) = -1 b = 4/ ( − 4 ) = − 1 . Square roots are ± ( 4 + i ) \pm(4+i) ± ( 4 + i ) .
Absolute value: ∣ 6 + 2 i ∣ = 6 2 + 2 2 = 36 + 4 = 40 = 2 10 |6+2i| = \sqrt{6^2 + 2^2} = \sqrt{36+4} = \sqrt{40} = 2\sqrt{10} ∣6 + 2 i ∣ = 6 2 + 2 2 = 36 + 4 = 40 = 2 10 Let 6 + 2 i = a + b i \sqrt{6+2i} = a+bi 6 + 2 i = a + bi . 6 + 2 i = a 2 − b 2 + 2 a b i 6+2i = a^2-b^2 + 2abi 6 + 2 i = a 2 − b 2 + 2 abi . a 2 − b 2 = 6 a^2-b^2=6 a 2 − b 2 = 6 and 2 a b = 2 2ab=2 2 ab = 2 , so a b = 1 ab=1 ab = 1 and b = 1 / a b = 1/a b = 1/ a . a 2 − 1 / a 2 = 6 a^2 - 1/a^2 = 6 a 2 − 1/ a 2 = 6 . a 4 − 1 = 6 a 2 a^4-1 = 6a^2 a 4 − 1 = 6 a 2 , so a 4 − 6 a 2 − 1 = 0 a^4-6a^2-1=0 a 4 − 6 a 2 − 1 = 0 . a 2 = 6 ± 36 + 4 2 = 6 ± 40 2 = 6 ± 2 10 2 = 3 ± 10 a^2 = \frac{6 \pm \sqrt{36+4}}{2} = \frac{6 \pm \sqrt{40}}{2} = \frac{6 \pm 2\sqrt{10}}{2} = 3 \pm \sqrt{10} a 2 = 2 6 ± 36 + 4 = 2 6 ± 40 = 2 6 ± 2 10 = 3 ± 10 . Since a a a is real, a 2 = 3 + 10 a^2 = 3 + \sqrt{10} a 2 = 3 + 10 . Thus a = ± 3 + 10 a = \pm \sqrt{3+\sqrt{10}} a = ± 3 + 10 . Then b = 1 / a = ± 1 3 + 10 = ± 3 − 10 9 − 10 = ± 10 − 3 b = 1/a = \pm \sqrt{\frac{1}{3+\sqrt{10}}} = \pm \sqrt{\frac{3-\sqrt{10}}{9-10}} = \pm \sqrt{\sqrt{10}-3} b = 1/ a = ± 3 + 10 1 = ± 9 − 10 3 − 10 = ± 10 − 3 .
Square roots are ± ( 3 + 10 + i 10 − 3 ) \pm(\sqrt{3+\sqrt{10}} + i \sqrt{\sqrt{10}-3}) ± ( 3 + 10 + i 10 − 3 ) .