平行四辺形の畑があり、その面積が $1200m^2$、底辺が $40m$ であるとき、高さを求める問題です。

幾何学平行四辺形面積高さ図形
2025/3/20

1. 問題の内容

平行四辺形の畑があり、その面積が 1200m21200m^2、底辺が 40m40m であるとき、高さを求める問題です。

2. 解き方の手順

平行四辺形の面積の公式は、
面積=底辺×高さ面積 = 底辺 \times 高さ
で表されます。
この公式を利用して高さを求めます。
面積が 1200m21200m^2、底辺が 40m40m なので、高さを hh とすると、
1200=40×h1200 = 40 \times h
この式から hh を求めます。
h=120040h = \frac{1200}{40}
h=30h = 30

3. 最終的な答え

30 m

「幾何学」の関連問題

一辺の長さが4である正四角錐について、表面積と体積を求めます。

正四角錐表面積体積三平方の定理
2025/4/8

右の図形を直線 $l$ の周りに1回転させてできる立体の表面積と体積を求める問題です。図形は半径3の半円と、一辺の長さが3の正方形が組み合わさったものです。

立体図形表面積体積回転体円柱
2025/4/8

一辺の長さが4である正四角錐の表面積と体積を求めます。

正四角錐表面積体積三平方の定理空間図形
2025/4/8

与えられた円錐について、以下の2つの問いに答えます。 (1) 展開図における扇形の中心角 $a$ を求めます。 (2) 円錐の表面積を求めます。

円錐表面積扇形展開図
2025/4/8

2点A, Bが与えられたとき、線分ABの長さを求める問題です。 (1) A(-1, 5), B(2, 1) (2) A(4, -2), B(8, 2)

距離座標線分三平方の定理
2025/4/8

直角三角形の2辺の長さがそれぞれ7と8であるとき、残りの1辺($x$)の長さを求めます。

ピタゴラスの定理直角三角形三平方の定理平方根
2025/4/8

直角三角形の斜辺の長さを求めます。直角を挟む2辺の長さはそれぞれ2と3です。斜辺の長さを$x$とします。

直角三角形ピタゴラスの定理三平方の定理斜辺
2025/4/8

直角三角形の斜辺の長さを求める問題です。直角を挟む2辺の長さは1と3で、斜辺の長さは$x$で表されています。三平方の定理を用いて$x$の値を求めます。

三平方の定理直角三角形斜辺平方根
2025/4/8

直角三角形の斜辺の長さが $\sqrt{21}$、一辺の長さが4であるとき、もう一辺の長さ$x$を求める問題です。

直角三角形ピタゴラスの定理辺の長さ
2025/4/8

与えられた直角三角形において、一つの角度が $60^\circ$ で、底辺の長さが $2$ であるとき、高さ $x$ を求める問題です。

直角三角形三角比タンジェント角度高さ辺の長さ
2025/4/8