The problem consists of three parts: (i) Differentiate $y = (3x+1)^3$ with respect to $x$. (ii) Given $f(x) = \frac{x}{x+2}$ and $g(x) = 2x-1$, find (a) $(f \circ g)(x)$ and (b) $(g \circ f)(\frac{3}{2})$. (iii) Rationalize the expression $\frac{3}{\sqrt{2}-1}$.

AlgebraDifferentiationChain RuleFunction CompositionRationalizationConjugates
2025/5/8

1. Problem Description

The problem consists of three parts:
(i) Differentiate y=(3x+1)3y = (3x+1)^3 with respect to xx.
(ii) Given f(x)=xx+2f(x) = \frac{x}{x+2} and g(x)=2x1g(x) = 2x-1, find (a) (fg)(x)(f \circ g)(x) and (b) (gf)(32)(g \circ f)(\frac{3}{2}).
(iii) Rationalize the expression 321\frac{3}{\sqrt{2}-1}.

2. Solution Steps

(i) Differentiate y=(3x+1)3y = (3x+1)^3 with respect to xx.
We use the chain rule: dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}. Let u=3x+1u = 3x+1. Then y=u3y = u^3.
dydu=3u2\frac{dy}{du} = 3u^2
dudx=3\frac{du}{dx} = 3
dydx=3u23=9u2=9(3x+1)2\frac{dy}{dx} = 3u^2 \cdot 3 = 9u^2 = 9(3x+1)^2
dydx=9(9x2+6x+1)=81x2+54x+9\frac{dy}{dx} = 9(9x^2 + 6x + 1) = 81x^2 + 54x + 9
(ii)
(a) (fg)(x)=f(g(x))=f(2x1)=2x1(2x1)+2=2x12x+1(f \circ g)(x) = f(g(x)) = f(2x-1) = \frac{2x-1}{(2x-1)+2} = \frac{2x-1}{2x+1}
(b) (gf)(x)=g(f(x))=g(xx+2)=2(xx+2)1=2xx+21=2x(x+2)x+2=x2x+2(g \circ f)(x) = g(f(x)) = g(\frac{x}{x+2}) = 2(\frac{x}{x+2}) - 1 = \frac{2x}{x+2} - 1 = \frac{2x - (x+2)}{x+2} = \frac{x-2}{x+2}.
(gf)(32)=32232+2=3423+42=17=17(g \circ f)(\frac{3}{2}) = \frac{\frac{3}{2} - 2}{\frac{3}{2} + 2} = \frac{\frac{3-4}{2}}{\frac{3+4}{2}} = \frac{-1}{7} = -\frac{1}{7}
(iii) Rationalize 321\frac{3}{\sqrt{2}-1}.
Multiply the numerator and denominator by the conjugate of the denominator, which is 2+1\sqrt{2}+1.
3212+12+1=3(2+1)(2)212=3(2+1)21=3(2+1)1=3(2+1)=32+3\frac{3}{\sqrt{2}-1} \cdot \frac{\sqrt{2}+1}{\sqrt{2}+1} = \frac{3(\sqrt{2}+1)}{(\sqrt{2})^2 - 1^2} = \frac{3(\sqrt{2}+1)}{2-1} = \frac{3(\sqrt{2}+1)}{1} = 3(\sqrt{2}+1) = 3\sqrt{2} + 3

3. Final Answer

(i) dydx=81x2+54x+9\frac{dy}{dx} = 81x^2 + 54x + 9
(ii) (a) (fg)(x)=2x12x+1(f \circ g)(x) = \frac{2x-1}{2x+1}
(b) (gf)(32)=17(g \circ f)(\frac{3}{2}) = -\frac{1}{7}
(iii) 32+33\sqrt{2}+3

Related problems in "Algebra"