The problem consists of three parts: (i) Determine if the function $f(x) = x^2$ is odd or even. (ii) Given the equation $(x + yi) = (3 + i)(2 - 3i)$, solve for $x$ and $y$. (iii) Differentiate $y = x^2$ using first principles.

AlgebraFunctionsEven and Odd FunctionsComplex NumbersDifferentiationCalculusFirst Principles
2025/5/8

1. Problem Description

The problem consists of three parts:
(i) Determine if the function f(x)=x2f(x) = x^2 is odd or even.
(ii) Given the equation (x+yi)=(3+i)(23i)(x + yi) = (3 + i)(2 - 3i), solve for xx and yy.
(iii) Differentiate y=x2y = x^2 using first principles.

2. Solution Steps

(i) To determine if f(x)=x2f(x) = x^2 is odd or even, we evaluate f(x)f(-x).
f(x)=(x)2=x2=f(x)f(-x) = (-x)^2 = x^2 = f(x).
Since f(x)=f(x)f(-x) = f(x), the function is even.
(ii) We are given (x+yi)=(3+i)(23i)(x + yi) = (3 + i)(2 - 3i).
First, expand the right-hand side:
(3+i)(23i)=3(2)+3(3i)+i(2)+i(3i)=69i+2i3i2(3 + i)(2 - 3i) = 3(2) + 3(-3i) + i(2) + i(-3i) = 6 - 9i + 2i - 3i^2.
Since i2=1i^2 = -1, we have:
69i+2i3(1)=67i+3=97i6 - 9i + 2i - 3(-1) = 6 - 7i + 3 = 9 - 7i.
Therefore, x+yi=97ix + yi = 9 - 7i.
Equating the real and imaginary parts, we get x=9x = 9 and y=7y = -7.
(iii) To differentiate y=x2y = x^2 using first principles, we use the definition of the derivative:
dydx=limh0f(x+h)f(x)h\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
In this case, f(x)=x2f(x) = x^2, so f(x+h)=(x+h)2=x2+2xh+h2f(x + h) = (x + h)^2 = x^2 + 2xh + h^2.
Then,
dydx=limh0(x2+2xh+h2)x2h=limh02xh+h2h=limh0h(2x+h)h\frac{dy}{dx} = \lim_{h \to 0} \frac{(x^2 + 2xh + h^2) - x^2}{h} = \lim_{h \to 0} \frac{2xh + h^2}{h} = \lim_{h \to 0} \frac{h(2x + h)}{h}.
We can cancel hh (since h0h \ne 0):
dydx=limh0(2x+h)\frac{dy}{dx} = \lim_{h \to 0} (2x + h).
As hh approaches 0, we have:
dydx=2x+0=2x\frac{dy}{dx} = 2x + 0 = 2x.

3. Final Answer

(i) The function f(x)=x2f(x) = x^2 is even.
(ii) x=9x = 9 and y=7y = -7.
(iii) dydx=2x\frac{dy}{dx} = 2x.