(a) We need to find the Laplace transform of f(t)=e−3t. The Laplace transform is defined as:
F(s)=∫0∞e−stf(t)dt So, for f(t)=e−3t, we have: F(s)=∫0∞e−ste−3tdt=∫0∞e−(s+3)tdt F(s)=[−(s+3)e−(s+3)t]0∞=−(s+3)0−1=s+31 provided that Re(s+3)>0 or Re(s)>−3. (b) We need to find the Laplace transform of f(t)=sin(kt). F(s)=∫0∞e−stsin(kt)dt We can use the following integral:
∫eaxsin(bx)dx=a2+b2eax(asin(bx)−bcos(bx))+C Therefore,
∫0∞e−stsin(kt)dt=[s2+k2e−st(−ssin(kt)−kcos(kt))]0∞ F(s)=limt→∞s2+k2e−st(−ssin(kt)−kcos(kt))−s2+k21(−ssin(0)−kcos(0)) If s>0, the first term goes to