The problem consists of two parts. First, express the function $f(x) = \cos(2x) + \sqrt{3}\sin(2x)$ in the form $f(x) = \lambda \cos(ax + b)$, and determine the values of $a$, $b$, and $\lambda$. Second, solve the inequality $f(x) \ge \sqrt{3}$ in the interval $[0, \pi]$.

AlgebraTrigonometryTrigonometric IdentitiesInequalitiesIntervals
2025/5/9

1. Problem Description

The problem consists of two parts.
First, express the function f(x)=cos(2x)+3sin(2x)f(x) = \cos(2x) + \sqrt{3}\sin(2x) in the form f(x)=λcos(ax+b)f(x) = \lambda \cos(ax + b), and determine the values of aa, bb, and λ\lambda.
Second, solve the inequality f(x)3f(x) \ge \sqrt{3} in the interval [0,π][0, \pi].

2. Solution Steps

Part 1: Express f(x)f(x) in the form λcos(ax+b)\lambda \cos(ax + b).
We have f(x)=cos(2x)+3sin(2x)f(x) = \cos(2x) + \sqrt{3}\sin(2x). We want to express this as λcos(ax+b)\lambda \cos(ax + b).
We can rewrite λcos(ax+b)\lambda \cos(ax + b) as λ(cos(ax)cos(b)sin(ax)sin(b))=λcos(b)cos(ax)λsin(b)sin(ax)\lambda (\cos(ax) \cos(b) - \sin(ax) \sin(b)) = \lambda \cos(b) \cos(ax) - \lambda \sin(b) \sin(ax).
Comparing the two expressions, we have:
cos(2x)+3sin(2x)=λcos(b)cos(ax)λsin(b)sin(ax)\cos(2x) + \sqrt{3}\sin(2x) = \lambda \cos(b) \cos(ax) - \lambda \sin(b) \sin(ax).
From this, we can infer that a=2a = 2.
Then we have:
cos(2x)+3sin(2x)=λcos(b)cos(2x)λsin(b)sin(2x)\cos(2x) + \sqrt{3}\sin(2x) = \lambda \cos(b) \cos(2x) - \lambda \sin(b) \sin(2x).
Equating the coefficients of cos(2x)\cos(2x) and sin(2x)\sin(2x), we get:
λcos(b)=1\lambda \cos(b) = 1 and λsin(b)=3-\lambda \sin(b) = \sqrt{3}.
Squaring and adding the two equations, we have:
(λcos(b))2+(λsin(b))2=12+(3)2(\lambda \cos(b))^2 + (-\lambda \sin(b))^2 = 1^2 + (\sqrt{3})^2.
λ2(cos2(b)+sin2(b))=1+3=4\lambda^2 (\cos^2(b) + \sin^2(b)) = 1 + 3 = 4.
Since cos2(b)+sin2(b)=1\cos^2(b) + \sin^2(b) = 1, we have λ2=4\lambda^2 = 4.
Since λ>0\lambda > 0, we take λ=2\lambda = 2.
Now we have 2cos(b)=12 \cos(b) = 1 and 2sin(b)=3-2 \sin(b) = \sqrt{3}.
Thus cos(b)=12\cos(b) = \frac{1}{2} and sin(b)=32\sin(b) = -\frac{\sqrt{3}}{2}.
This means that b=π3b = -\frac{\pi}{3}.
Therefore, f(x)=2cos(2xπ3)f(x) = 2 \cos(2x - \frac{\pi}{3}).
Part 2: Solve the inequality f(x)3f(x) \ge \sqrt{3} in the interval [0,π][0, \pi].
We have 2cos(2xπ3)32 \cos(2x - \frac{\pi}{3}) \ge \sqrt{3}.
cos(2xπ3)32\cos(2x - \frac{\pi}{3}) \ge \frac{\sqrt{3}}{2}.
Let u=2xπ3u = 2x - \frac{\pi}{3}.
We want to solve cos(u)32\cos(u) \ge \frac{\sqrt{3}}{2}.
We know that cos(π6)=32\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}.
The general solution is π6+2kπuπ6+2kπ-\frac{\pi}{6} + 2k\pi \le u \le \frac{\pi}{6} + 2k\pi for some integer kk.
So π6+2kπ2xπ3π6+2kπ-\frac{\pi}{6} + 2k\pi \le 2x - \frac{\pi}{3} \le \frac{\pi}{6} + 2k\pi.
Adding π3\frac{\pi}{3} to all parts of the inequality, we have:
π6+2kπ2xπ2+2kπ\frac{\pi}{6} + 2k\pi \le 2x \le \frac{\pi}{2} + 2k\pi.
Dividing by 2, we have:
π12+kπxπ4+kπ\frac{\pi}{12} + k\pi \le x \le \frac{\pi}{4} + k\pi.
We want to find the values of xx in the interval [0,π][0, \pi].
If k=0k = 0, then π12xπ4\frac{\pi}{12} \le x \le \frac{\pi}{4}.
If k=1k = 1, then π12+πxπ4+π\frac{\pi}{12} + \pi \le x \le \frac{\pi}{4} + \pi, which is 13π12x5π4\frac{13\pi}{12} \le x \le \frac{5\pi}{4}.
Since we are only interested in solutions in the interval [0,π][0, \pi], we have π12xπ4\frac{\pi}{12} \le x \le \frac{\pi}{4}.

3. Final Answer

f(x)=2cos(2xπ3)f(x) = 2\cos(2x - \frac{\pi}{3}) where a=2,b=π3,λ=2a = 2, b = -\frac{\pi}{3}, \lambda = 2.
The solution to f(x)3f(x) \ge \sqrt{3} in [0,π][0, \pi] is [π12,π4][\frac{\pi}{12}, \frac{\pi}{4}].

Related problems in "Algebra"

The problem presents a formula for calculating the area $A$ based on variables $n$ and $d$. The form...

FormulaArea CalculationVariables
2025/5/10

The problem asks us to find the equation of the line passing through the points $(-1, 4)$ and $(5, -...

Linear EquationsSlope-intercept formPoint-slope formCoordinate Geometry
2025/5/9

The problem asks us to find the value of $x$ such that the lines $2x+2$ and $x+56$ are parallel and ...

Linear EquationsParallel Lines
2025/5/9

The problem is to find $x$ so that $114+x = 115$. Then, find $y$ so that $x+y = 115$.

Linear EquationsSolving Equations
2025/5/9

The problem is to solve the system of two linear equations with two variables: $x + y = 9$ $2x + 3y ...

Linear EquationsSystems of EquationsSubstitution Method
2025/5/9

The problem is to factor the quadratic expression $x^2 + 2x - 15$.

Quadratic EquationsFactoringPolynomials
2025/5/9

The problem asks us to find the value of $x$ given the matrix equation: $$ \begin{bmatrix} 6 & -2 \\...

Linear AlgebraMatrix OperationsMatrix MultiplicationSolving Equations
2025/5/9

The problem asks us to find the value of $x$ given the matrix equation $\begin{bmatrix} 9 & 4 \\ -3 ...

Linear AlgebraMatrix EquationsMatrix MultiplicationSystems of Equations
2025/5/9

We are given a matrix equation: $[4 \ 3] \begin{bmatrix} 1 & -2m \\ 3 & -1 \end{bmatrix} = [13 \ -35...

Matrix AlgebraMatrix EquationsLinear Equations
2025/5/9

We are asked to solve two complex number problems: (e) Simplify $\frac{1}{(2+i)(\sqrt{3}-2i)}$ (f) S...

Complex NumbersComplex Number ArithmeticSimplificationRationalization
2025/5/9