Part 1: Express f ( x ) f(x) f ( x ) in the form λ cos ( a x + b ) \lambda \cos(ax + b) λ cos ( a x + b ) .
We have f ( x ) = cos ( 2 x ) + 3 sin ( 2 x ) f(x) = \cos(2x) + \sqrt{3}\sin(2x) f ( x ) = cos ( 2 x ) + 3 sin ( 2 x ) . We want to express this as λ cos ( a x + b ) \lambda \cos(ax + b) λ cos ( a x + b ) . We can rewrite λ cos ( a x + b ) \lambda \cos(ax + b) λ cos ( a x + b ) as λ ( cos ( a x ) cos ( b ) − sin ( a x ) sin ( b ) ) = λ cos ( b ) cos ( a x ) − λ sin ( b ) sin ( a x ) \lambda (\cos(ax) \cos(b) - \sin(ax) \sin(b)) = \lambda \cos(b) \cos(ax) - \lambda \sin(b) \sin(ax) λ ( cos ( a x ) cos ( b ) − sin ( a x ) sin ( b )) = λ cos ( b ) cos ( a x ) − λ sin ( b ) sin ( a x ) .
Comparing the two expressions, we have:
cos ( 2 x ) + 3 sin ( 2 x ) = λ cos ( b ) cos ( a x ) − λ sin ( b ) sin ( a x ) \cos(2x) + \sqrt{3}\sin(2x) = \lambda \cos(b) \cos(ax) - \lambda \sin(b) \sin(ax) cos ( 2 x ) + 3 sin ( 2 x ) = λ cos ( b ) cos ( a x ) − λ sin ( b ) sin ( a x ) . From this, we can infer that a = 2 a = 2 a = 2 . Then we have:
cos ( 2 x ) + 3 sin ( 2 x ) = λ cos ( b ) cos ( 2 x ) − λ sin ( b ) sin ( 2 x ) \cos(2x) + \sqrt{3}\sin(2x) = \lambda \cos(b) \cos(2x) - \lambda \sin(b) \sin(2x) cos ( 2 x ) + 3 sin ( 2 x ) = λ cos ( b ) cos ( 2 x ) − λ sin ( b ) sin ( 2 x ) . Equating the coefficients of cos ( 2 x ) \cos(2x) cos ( 2 x ) and sin ( 2 x ) \sin(2x) sin ( 2 x ) , we get: λ cos ( b ) = 1 \lambda \cos(b) = 1 λ cos ( b ) = 1 and − λ sin ( b ) = 3 -\lambda \sin(b) = \sqrt{3} − λ sin ( b ) = 3 . Squaring and adding the two equations, we have:
( λ cos ( b ) ) 2 + ( − λ sin ( b ) ) 2 = 1 2 + ( 3 ) 2 (\lambda \cos(b))^2 + (-\lambda \sin(b))^2 = 1^2 + (\sqrt{3})^2 ( λ cos ( b ) ) 2 + ( − λ sin ( b ) ) 2 = 1 2 + ( 3 ) 2 . λ 2 ( cos 2 ( b ) + sin 2 ( b ) ) = 1 + 3 = 4 \lambda^2 (\cos^2(b) + \sin^2(b)) = 1 + 3 = 4 λ 2 ( cos 2 ( b ) + sin 2 ( b )) = 1 + 3 = 4 . Since cos 2 ( b ) + sin 2 ( b ) = 1 \cos^2(b) + \sin^2(b) = 1 cos 2 ( b ) + sin 2 ( b ) = 1 , we have λ 2 = 4 \lambda^2 = 4 λ 2 = 4 . Since λ > 0 \lambda > 0 λ > 0 , we take λ = 2 \lambda = 2 λ = 2 .
Now we have 2 cos ( b ) = 1 2 \cos(b) = 1 2 cos ( b ) = 1 and − 2 sin ( b ) = 3 -2 \sin(b) = \sqrt{3} − 2 sin ( b ) = 3 . Thus cos ( b ) = 1 2 \cos(b) = \frac{1}{2} cos ( b ) = 2 1 and sin ( b ) = − 3 2 \sin(b) = -\frac{\sqrt{3}}{2} sin ( b ) = − 2 3 . This means that b = − π 3 b = -\frac{\pi}{3} b = − 3 π . Therefore, f ( x ) = 2 cos ( 2 x − π 3 ) f(x) = 2 \cos(2x - \frac{\pi}{3}) f ( x ) = 2 cos ( 2 x − 3 π ) .
Part 2: Solve the inequality f ( x ) ≥ 3 f(x) \ge \sqrt{3} f ( x ) ≥ 3 in the interval [ 0 , π ] [0, \pi] [ 0 , π ] . We have 2 cos ( 2 x − π 3 ) ≥ 3 2 \cos(2x - \frac{\pi}{3}) \ge \sqrt{3} 2 cos ( 2 x − 3 π ) ≥ 3 . cos ( 2 x − π 3 ) ≥ 3 2 \cos(2x - \frac{\pi}{3}) \ge \frac{\sqrt{3}}{2} cos ( 2 x − 3 π ) ≥ 2 3 . Let u = 2 x − π 3 u = 2x - \frac{\pi}{3} u = 2 x − 3 π . We want to solve cos ( u ) ≥ 3 2 \cos(u) \ge \frac{\sqrt{3}}{2} cos ( u ) ≥ 2 3 . We know that cos ( π 6 ) = 3 2 \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} cos ( 6 π ) = 2 3 . The general solution is − π 6 + 2 k π ≤ u ≤ π 6 + 2 k π -\frac{\pi}{6} + 2k\pi \le u \le \frac{\pi}{6} + 2k\pi − 6 π + 2 kπ ≤ u ≤ 6 π + 2 kπ for some integer k k k . So − π 6 + 2 k π ≤ 2 x − π 3 ≤ π 6 + 2 k π -\frac{\pi}{6} + 2k\pi \le 2x - \frac{\pi}{3} \le \frac{\pi}{6} + 2k\pi − 6 π + 2 kπ ≤ 2 x − 3 π ≤ 6 π + 2 kπ . Adding π 3 \frac{\pi}{3} 3 π to all parts of the inequality, we have: π 6 + 2 k π ≤ 2 x ≤ π 2 + 2 k π \frac{\pi}{6} + 2k\pi \le 2x \le \frac{\pi}{2} + 2k\pi 6 π + 2 kπ ≤ 2 x ≤ 2 π + 2 kπ . Dividing by 2, we have:
π 12 + k π ≤ x ≤ π 4 + k π \frac{\pi}{12} + k\pi \le x \le \frac{\pi}{4} + k\pi 12 π + kπ ≤ x ≤ 4 π + kπ . We want to find the values of x x x in the interval [ 0 , π ] [0, \pi] [ 0 , π ] . If k = 0 k = 0 k = 0 , then π 12 ≤ x ≤ π 4 \frac{\pi}{12} \le x \le \frac{\pi}{4} 12 π ≤ x ≤ 4 π . If k = 1 k = 1 k = 1 , then π 12 + π ≤ x ≤ π 4 + π \frac{\pi}{12} + \pi \le x \le \frac{\pi}{4} + \pi 12 π + π ≤ x ≤ 4 π + π , which is 13 π 12 ≤ x ≤ 5 π 4 \frac{13\pi}{12} \le x \le \frac{5\pi}{4} 12 13 π ≤ x ≤ 4 5 π . Since we are only interested in solutions in the interval [ 0 , π ] [0, \pi] [ 0 , π ] , we have π 12 ≤ x ≤ π 4 \frac{\pi}{12} \le x \le \frac{\pi}{4} 12 π ≤ x ≤ 4 π .