We are asked to solve two complex number problems: (e) Simplify $\frac{1}{(2+i)(\sqrt{3}-2i)}$ (f) Simplify $5-4i + \frac{5}{3-4i}$

AlgebraComplex NumbersComplex Number ArithmeticSimplificationRationalization
2025/5/9

1. Problem Description

We are asked to solve two complex number problems:
(e) Simplify 1(2+i)(32i)\frac{1}{(2+i)(\sqrt{3}-2i)}
(f) Simplify 54i+534i5-4i + \frac{5}{3-4i}

2. Solution Steps

(e) Simplify 1(2+i)(32i)\frac{1}{(2+i)(\sqrt{3}-2i)}
First, expand the denominator:
(2+i)(32i)=234i+i32i2=234i+i3+2=(23+2)+i(34)(2+i)(\sqrt{3}-2i) = 2\sqrt{3} - 4i + i\sqrt{3} - 2i^2 = 2\sqrt{3} - 4i + i\sqrt{3} + 2 = (2\sqrt{3}+2) + i(\sqrt{3}-4)
Then, we have:
1(23+2)+i(34)\frac{1}{(2\sqrt{3}+2) + i(\sqrt{3}-4)}
To rationalize the denominator, multiply both numerator and denominator by the conjugate of the denominator, which is (23+2)i(34)(2\sqrt{3}+2) - i(\sqrt{3}-4).
1(23+2)+i(34)(23+2)i(34)(23+2)i(34)=(23+2)i(34)((23+2)+i(34))((23+2)i(34))\frac{1}{(2\sqrt{3}+2) + i(\sqrt{3}-4)} \cdot \frac{(2\sqrt{3}+2) - i(\sqrt{3}-4)}{(2\sqrt{3}+2) - i(\sqrt{3}-4)} = \frac{(2\sqrt{3}+2) - i(\sqrt{3}-4)}{((2\sqrt{3}+2) + i(\sqrt{3}-4))((2\sqrt{3}+2) - i(\sqrt{3}-4))}
The denominator becomes:
(23+2)2+(34)2=(4(3)+83+4)+(383+16)=(12+83+4)+(1983)=16+19+8383=35(2\sqrt{3}+2)^2 + (\sqrt{3}-4)^2 = (4(3) + 8\sqrt{3} + 4) + (3 - 8\sqrt{3} + 16) = (12 + 8\sqrt{3} + 4) + (19 - 8\sqrt{3}) = 16 + 19 + 8\sqrt{3} - 8\sqrt{3} = 35
So the expression becomes:
(23+2)i(34)35=23+235+i4335\frac{(2\sqrt{3}+2) - i(\sqrt{3}-4)}{35} = \frac{2\sqrt{3}+2}{35} + i\frac{4-\sqrt{3}}{35}
(f) Simplify 54i+534i5-4i + \frac{5}{3-4i}
To rationalize the denominator of the fraction, multiply both numerator and denominator by the conjugate of the denominator, which is 3+4i3+4i.
534i3+4i3+4i=5(3+4i)(34i)(3+4i)=15+20i32+42=15+20i9+16=15+20i25=1525+2025i=35+45i\frac{5}{3-4i} \cdot \frac{3+4i}{3+4i} = \frac{5(3+4i)}{(3-4i)(3+4i)} = \frac{15+20i}{3^2 + 4^2} = \frac{15+20i}{9+16} = \frac{15+20i}{25} = \frac{15}{25} + \frac{20}{25}i = \frac{3}{5} + \frac{4}{5}i
So the expression becomes:
54i+35+45i=5+354i+45i=255+35205i+45i=285165i5-4i + \frac{3}{5} + \frac{4}{5}i = 5+\frac{3}{5} - 4i + \frac{4}{5}i = \frac{25}{5}+\frac{3}{5} - \frac{20}{5}i + \frac{4}{5}i = \frac{28}{5} - \frac{16}{5}i

3. Final Answer

(e) 23+235+i4335\frac{2\sqrt{3}+2}{35} + i\frac{4-\sqrt{3}}{35}
(f) 285165i\frac{28}{5} - \frac{16}{5}i

Related problems in "Algebra"

The problem is to factor the quadratic expression $x^2 + 2x - 15$.

Quadratic EquationsFactoringPolynomials
2025/5/9

The problem asks us to find the value of $x$ given the matrix equation: $$ \begin{bmatrix} 6 & -2 \\...

Linear AlgebraMatrix OperationsMatrix MultiplicationSolving Equations
2025/5/9

The problem asks us to find the value of $x$ given the matrix equation $\begin{bmatrix} 9 & 4 \\ -3 ...

Linear AlgebraMatrix EquationsMatrix MultiplicationSystems of Equations
2025/5/9

We are given a matrix equation: $[4 \ 3] \begin{bmatrix} 1 & -2m \\ 3 & -1 \end{bmatrix} = [13 \ -35...

Matrix AlgebraMatrix EquationsLinear Equations
2025/5/9

The problem requires us to multiply a $2 \times 1$ matrix with a $2 \times 2$ matrix: $\begin{bmatri...

Matrix MultiplicationLinear AlgebraMatrix Operations
2025/5/9

We are asked to simplify expressions involving square roots of negative numbers and express the resu...

Complex NumbersSimplificationSquare Roots
2025/5/9

The problem gives a matrix equation and asks us to find the values of $p$ and $q$. The equation is: ...

MatricesMatrix EquationsLinear AlgebraScalar MultiplicationMatrix Subtraction
2025/5/9

We are given the following matrix equation: $ \begin{bmatrix} 4 & -2 \\ 3 & -6 \end{bmatrix} \begin{...

MatricesMatrix MultiplicationLinear EquationsProblem Analysis
2025/5/9

The problem gives two matrices, $P = \begin{bmatrix} 2 & 5 \\ -4 & 6 \end{bmatrix}$ and $Q = \begin{...

Matrix OperationsMatrix SubtractionScalar Multiplication
2025/5/9

We are given a matrix equation $[2p \quad 3]\begin{bmatrix} 4 \\ -6 \end{bmatrix} = [6]$ and need to...

Matrix AlgebraLinear EquationsSolving Equations
2025/5/9