First, we rewrite the given equation as:
4x2−2x−4y2+2y+1=0 We can complete the square for the x terms and the y terms. 4(x2−21x)−4(y2−21y)+1=0 To complete the square for x2−21x, we need to add and subtract (41)2=161 inside the parenthesis. To complete the square for y2−21y, we need to add and subtract (41)2=161 inside the parenthesis. 4(x2−21x+161−161)−4(y2−21y+161−161)+1=0 4(x−41)2−41−4(y−41)2+41+1=0 4(x−41)2−4(y−41)2+1=0 4(x−41)2−4(y−41)2=−1 4(y−41)2−4(x−41)2=1 (y−41)2−(x−41)2=41 Let Y=y−41 and X=x−41. Then Y2−X2=41 4Y2−4X2=1 This is a hyperbola.
If we rewrite this in terms of x and y, we have:
4(y−41)2−4(x−41)2=1 This represents a hyperbola centered at (41,41).