Solve the equation $4x^2 - 4y^2 - 2x + 2y + 1 = 0$.

AlgebraQuadratic EquationsConic SectionsHyperbolaCompleting the Square
2025/3/21

1. Problem Description

Solve the equation 4x24y22x+2y+1=04x^2 - 4y^2 - 2x + 2y + 1 = 0.

2. Solution Steps

First, we rewrite the given equation as:
4x22x4y2+2y+1=04x^2 - 2x - 4y^2 + 2y + 1 = 0
We can complete the square for the xx terms and the yy terms.
4(x212x)4(y212y)+1=04(x^2 - \frac{1}{2}x) - 4(y^2 - \frac{1}{2}y) + 1 = 0
To complete the square for x212xx^2 - \frac{1}{2}x, we need to add and subtract (14)2=116(\frac{1}{4})^2 = \frac{1}{16} inside the parenthesis.
To complete the square for y212yy^2 - \frac{1}{2}y, we need to add and subtract (14)2=116(\frac{1}{4})^2 = \frac{1}{16} inside the parenthesis.
4(x212x+116116)4(y212y+116116)+1=04(x^2 - \frac{1}{2}x + \frac{1}{16} - \frac{1}{16}) - 4(y^2 - \frac{1}{2}y + \frac{1}{16} - \frac{1}{16}) + 1 = 0
4(x14)2144(y14)2+14+1=04(x - \frac{1}{4})^2 - \frac{1}{4} - 4(y - \frac{1}{4})^2 + \frac{1}{4} + 1 = 0
4(x14)24(y14)2+1=04(x - \frac{1}{4})^2 - 4(y - \frac{1}{4})^2 + 1 = 0
4(x14)24(y14)2=14(x - \frac{1}{4})^2 - 4(y - \frac{1}{4})^2 = -1
4(y14)24(x14)2=14(y - \frac{1}{4})^2 - 4(x - \frac{1}{4})^2 = 1
(y14)2(x14)2=14(y - \frac{1}{4})^2 - (x - \frac{1}{4})^2 = \frac{1}{4}
Let Y=y14Y = y - \frac{1}{4} and X=x14X = x - \frac{1}{4}.
Then Y2X2=14Y^2 - X^2 = \frac{1}{4}
4Y24X2=14Y^2 - 4X^2 = 1
This is a hyperbola.
If we rewrite this in terms of x and y, we have:
4(y14)24(x14)2=14(y - \frac{1}{4})^2 - 4(x - \frac{1}{4})^2 = 1
This represents a hyperbola centered at (14,14)(\frac{1}{4}, \frac{1}{4}).

3. Final Answer

4(y14)24(x14)2=14(y - \frac{1}{4})^2 - 4(x - \frac{1}{4})^2 = 1
(y14)2(x14)2=14(y - \frac{1}{4})^2 - (x - \frac{1}{4})^2 = \frac{1}{4}
This is a hyperbola.

Related problems in "Algebra"

Given that $y = 2x$ and $3^{x+y} = 27$, we need to find the value of $x$.

EquationsExponentsSubstitution
2025/4/5

We are given the equation $\frac{6x+m}{2x^2+7x-15} = \frac{4}{x+5} - \frac{2}{2x-3}$, and we need to...

EquationsRational ExpressionsSolving EquationsSimplificationFactorization
2025/4/5

We are given the equation $\frac{6x+m}{2x^2+7x-15} = \frac{4}{x+5} - \frac{2}{2x-3}$ and we need to ...

EquationsRational ExpressionsSolving for a VariableFactoring
2025/4/5

We are given the equation $\frac{3x+4}{x^2-3x+2} = \frac{A}{x-1} + \frac{B}{x-2}$ and we are asked t...

Partial FractionsAlgebraic ManipulationEquations
2025/4/5

We are given a polynomial $x^3 - 2x^2 + mx + 4$ and told that when it is divided by $x-3$, the remai...

PolynomialsRemainder TheoremAlgebraic Equations
2025/4/5

Given the quadratic equation $4x^2 - 9x - 16 = 0$, where $\alpha$ and $\beta$ are its roots, we need...

Quadratic EquationsRoots of EquationsVieta's Formulas
2025/4/5

The problem defines a binary operation $*$ such that $a * b = a^2 - b^2 + ab$, where $a$ and $b$ are...

Binary OperationsReal NumbersSquare RootsSimplification
2025/4/5

We are given two functions, $f(x) = x + 3$ and $g(x) = x^2 - 1$. We need to find the composite funct...

Function CompositionAlgebraic ManipulationPolynomials
2025/4/5

We are asked to find the value of $x$ in the equation $8^{2x+1} = \frac{1}{512}$.

ExponentsEquationsLogarithmsSolving Equations
2025/4/5

Given the equation $2 \log_y x = 3$, find the relationship between $x$ and $y$.

LogarithmsExponentsEquation Solving
2025/4/5