First, we apply the power of a product rule: (ab)n=anbn. (2x−1y−2z−3)−2=2−2(x−1)−2(y−2)−2(z−3)−2=2−2x2y4z6 (3x−2y−3z−1)3=33(x−2)3(y−3)3(z−1)3=33x−6y−9z−3 Next, we multiply the two simplified expressions:
(2−2x2y4z6)(33x−6y−9z−3)=2−233x2−6y4−9z6−3=2−233x−4y−5z3 Now, we write the expression with positive exponents. Recall that a−n=an1. 2−233x−4y−5z3=22x4y533z3=4x4y527z3