The problem is to simplify the expression $(2x^{-1}y^{-2}z^{-3})^{-2} \times (3x^{-2}y^{-3}z^{-1})^3$ and write the answer with positive exponents.

AlgebraExponentsSimplificationAlgebraic Expressions
2025/6/8

1. Problem Description

The problem is to simplify the expression (2x1y2z3)2×(3x2y3z1)3(2x^{-1}y^{-2}z^{-3})^{-2} \times (3x^{-2}y^{-3}z^{-1})^3 and write the answer with positive exponents.

2. Solution Steps

First, we apply the power of a product rule: (ab)n=anbn(ab)^n = a^n b^n.
(2x1y2z3)2=22(x1)2(y2)2(z3)2=22x2y4z6(2x^{-1}y^{-2}z^{-3})^{-2} = 2^{-2}(x^{-1})^{-2}(y^{-2})^{-2}(z^{-3})^{-2} = 2^{-2}x^{2}y^{4}z^{6}
(3x2y3z1)3=33(x2)3(y3)3(z1)3=33x6y9z3(3x^{-2}y^{-3}z^{-1})^3 = 3^3(x^{-2})^3(y^{-3})^3(z^{-1})^3 = 3^3x^{-6}y^{-9}z^{-3}
Next, we multiply the two simplified expressions:
(22x2y4z6)(33x6y9z3)=2233x26y49z63=2233x4y5z3(2^{-2}x^{2}y^{4}z^{6})(3^3x^{-6}y^{-9}z^{-3}) = 2^{-2}3^3x^{2-6}y^{4-9}z^{6-3} = 2^{-2}3^3x^{-4}y^{-5}z^{3}
Now, we write the expression with positive exponents. Recall that an=1ana^{-n} = \frac{1}{a^n}.
2233x4y5z3=33z322x4y5=27z34x4y52^{-2}3^3x^{-4}y^{-5}z^{3} = \frac{3^3z^3}{2^2x^4y^5} = \frac{27z^3}{4x^4y^5}

3. Final Answer

27z34x4y5\frac{27z^3}{4x^4y^5}

Related problems in "Algebra"

We need to solve the equation $\frac{25}{3x} = \frac{3x}{9}$ for $x$.

EquationsSolving EquationsRational EquationsSquare Roots
2025/7/30

The problem requires simplifying various expressions involving exponents, multiplication, and divisi...

ExponentsSimplificationAlgebraic ExpressionsPowersDivisionMultiplication
2025/7/30

Simplify the expression $(8y^3x^{27}x^3)^{\frac{1}{3}}$.

ExponentsSimplificationAlgebraic ExpressionsRadicals
2025/7/30

We are given a 3x3 matrix $A$ and asked to find all the minors $|A_{ij}|$ of the matrix. The given m...

MatricesDeterminantsMinors
2025/7/29

A binary operation $*$ is defined on the set of real numbers $R$ by $m * n = m + n - \frac{1}{2}n$. ...

Binary OperationReal NumbersExpression Evaluation
2025/7/29

We are given a 4x4 matrix $A$ and asked to find its determinant $|A|$ and the (3,4) entry of its inv...

Linear AlgebraMatrix DeterminantMatrix InverseCofactor ExpansionAdjugate Matrix
2025/7/29

The problem is to solve the quadratic equation $55n^2 - 33n - 1940 = 0$ for the variable $n$.

Quadratic EquationsQuadratic FormulaRoots of Equation
2025/7/25

We need to solve the equation $\frac{x+6}{x+4} = \frac{-5}{3x}$ for $x$.

EquationsRational EquationsQuadratic EquationsSolving EquationsAlgebraic Manipulation
2025/7/24

The problem asks to factorize the quadratic expression $3x^2 - 2x - 1$.

Quadratic EquationsFactorizationAlgebraic Manipulation
2025/7/24

We are asked to solve four problems: (a) Expand and simplify the expression $6(2y-3) - 5(y+1)$. (b) ...

Algebraic SimplificationExponentsDifference of SquaresEquationsFactorization
2025/7/22