We are given a 4x4 matrix $A$ and asked to find its determinant $|A|$ and the (3,4) entry of its inverse matrix $A^{-1}$. The matrix $A$ is given by $A = \begin{pmatrix} 3 & -1 & 2 & 1 \\ -2 & 4 & 1 & -1 \\ 6 & -5 & -2 & 2 \\ -3 & 7 & -2 & -5 \end{pmatrix}$.

AlgebraLinear AlgebraMatrix DeterminantMatrix InverseCofactor ExpansionAdjugate Matrix
2025/7/29

1. Problem Description

We are given a 4x4 matrix AA and asked to find its determinant A|A| and the (3,4) entry of its inverse matrix A1A^{-1}.
The matrix AA is given by
A=(3121241165223725)A = \begin{pmatrix} 3 & -1 & 2 & 1 \\ -2 & 4 & 1 & -1 \\ 6 & -5 & -2 & 2 \\ -3 & 7 & -2 & -5 \end{pmatrix}.

2. Solution Steps

(1) To find the determinant of AA, we can use cofactor expansion. Let's expand along the first row:
A=3C11+(1)C12+2C13+1C14|A| = 3C_{11} + (-1)C_{12} + 2C_{13} + 1C_{14}
where Cij=(1)i+jMijC_{ij} = (-1)^{i+j}M_{ij}, and MijM_{ij} is the determinant of the 3x3 matrix formed by removing the ii-th row and jj-th column.
M11=411522725=4(10+4)1(25+14)+(1)(10+14)=563924=7M_{11} = \begin{vmatrix} 4 & 1 & -1 \\ -5 & -2 & 2 \\ 7 & -2 & -5 \end{vmatrix} = 4(10+4) - 1(25+14) + (-1)(10+14) = 56 - 39 - 24 = -7
M12=211622325=2(10+4)1(30+6)+(1)(126)=28+24+18=14M_{12} = \begin{vmatrix} -2 & 1 & -1 \\ 6 & -2 & 2 \\ -3 & -2 & -5 \end{vmatrix} = -2(10+4) - 1(-30+6) + (-1)(-12-6) = -28 + 24 + 18 = 14
M13=241652375=2(2514)4(30+6)+(1)(4215)=22+9627=47M_{13} = \begin{vmatrix} -2 & 4 & -1 \\ 6 & -5 & 2 \\ -3 & 7 & -5 \end{vmatrix} = -2(25-14) - 4(-30+6) + (-1)(42-15) = -22 + 96 - 27 = 47
M14=241652372=2(10+14)4(126)+1(4215)=48+72+27=51M_{14} = \begin{vmatrix} -2 & 4 & 1 \\ 6 & -5 & -2 \\ -3 & 7 & -2 \end{vmatrix} = -2(10+14) - 4(-12-6) + 1(42-15) = -48 + 72 + 27 = 51
C11=(1)1+1M11=7C_{11} = (-1)^{1+1}M_{11} = -7
C12=(1)1+2M12=14C_{12} = (-1)^{1+2}M_{12} = -14
C13=(1)1+3M13=47C_{13} = (-1)^{1+3}M_{13} = 47
C14=(1)1+4M14=51C_{14} = (-1)^{1+4}M_{14} = -51
A=3(7)1(14)+2(47)+1(51)=21+14+9451=36|A| = 3(-7) - 1(-14) + 2(47) + 1(-51) = -21 + 14 + 94 - 51 = 36
(2) To find the (3,4) entry of A1A^{-1}, we use the formula A1=1Aadj(A)A^{-1} = \frac{1}{|A|}adj(A), where adj(A)adj(A) is the adjugate of AA. The (3,4) entry of A1A^{-1} is given by 1AC43\frac{1}{|A|}C_{43}, where C43C_{43} is the (4,3) cofactor of AA.
C43=(1)4+3M43=(1)7M43=M43C_{43} = (-1)^{4+3} M_{43} = (-1)^7 M_{43} = -M_{43}
M43=311241652=3(85)(1)(4+6)+1(1024)=3(3)+1(2)+1(14)=9+214=3M_{43} = \begin{vmatrix} 3 & -1 & 1 \\ -2 & 4 & -1 \\ 6 & -5 & 2 \end{vmatrix} = 3(8-5) - (-1)(-4+6) + 1(10-24) = 3(3) + 1(2) + 1(-14) = 9 + 2 - 14 = -3
C43=(3)=3C_{43} = -(-3) = 3
(A1)34=1AC43=136(3)=112(A^{-1})_{34} = \frac{1}{|A|}C_{43} = \frac{1}{36}(3) = \frac{1}{12}

3. Final Answer

(1) A=36|A| = 36
(2) (A1)34=112(A^{-1})_{34} = \frac{1}{12}

Related problems in "Algebra"

The problem requires simplifying various expressions involving exponents, multiplication, and divisi...

ExponentsSimplificationAlgebraic ExpressionsPowersDivisionMultiplication
2025/7/30

Simplify the expression $(8y^3x^{27}x^3)^{\frac{1}{3}}$.

ExponentsSimplificationAlgebraic ExpressionsRadicals
2025/7/30

We are given a 3x3 matrix $A$ and asked to find all the minors $|A_{ij}|$ of the matrix. The given m...

MatricesDeterminantsMinors
2025/7/29

A binary operation $*$ is defined on the set of real numbers $R$ by $m * n = m + n - \frac{1}{2}n$. ...

Binary OperationReal NumbersExpression Evaluation
2025/7/29

The problem is to solve the quadratic equation $55n^2 - 33n - 1940 = 0$ for the variable $n$.

Quadratic EquationsQuadratic FormulaRoots of Equation
2025/7/25

We need to solve the equation $\frac{x+6}{x+4} = \frac{-5}{3x}$ for $x$.

EquationsRational EquationsQuadratic EquationsSolving EquationsAlgebraic Manipulation
2025/7/24

The problem asks to factorize the quadratic expression $3x^2 - 2x - 1$.

Quadratic EquationsFactorizationAlgebraic Manipulation
2025/7/24

We are asked to solve four problems: (a) Expand and simplify the expression $6(2y-3) - 5(y+1)$. (b) ...

Algebraic SimplificationExponentsDifference of SquaresEquationsFactorization
2025/7/22

We are asked to simplify the expression $(a^{-2}b^3)^{-2}$, writing the answer with positive powers.

ExponentsSimplificationPower Rules
2025/7/22

A group of children bought a certain number of apples. If each apple is cut into 4 equal pieces and ...

System of EquationsWord Problem
2025/7/21