We can use the quadratic formula to solve for n: n=2a−b±b2−4ac In this case, a=55, b=−33, and c=−1940. Plugging these values into the quadratic formula, we get:
n=2(55)−(−33)±(−33)2−4(55)(−1940) n=11033±1089+426800 n=11033±427889 n=11033±654.1322 So we have two possible values for n: n1=11033+654.1322=110687.1322≈6.2466 n2=11033−654.1322=110−621.1322≈−5.6466 Let's verify our results by plugging them back into the original equation.
For n=6.2466: 55(6.2466)2−33(6.2466)−1940=55(39.0204)−206.1378−1940=2146.122−206.1378−1940=2146.122−2146.1378=−0.0158 which is close to zero. For n=−5.6466: 55(−5.6466)2−33(−5.6466)−1940=55(31.8843)+186.3378−1940=1753.6365+186.3378−1940=1939.9743−1940=−0.0257 which is close to zero. We can use wolfram alpha to check. The roots are n=11033±427889. n=11033+427889=11033+654.1322≈6.2466 n=11033−427889=11033−654.1322≈−5.6466