The problem requires simplifying various expressions involving exponents, multiplication, and division. We have 20 expressions to simplify.

AlgebraExponentsSimplificationAlgebraic ExpressionsPowersDivisionMultiplication
2025/7/30

1. Problem Description

The problem requires simplifying various expressions involving exponents, multiplication, and division. We have 20 expressions to simplify.

2. Solution Steps

1. $10^5 \times 10^4 = 10^{5+4} = 10^9$

2. $a^3 \times a^9 = a^{3+9} = a^{12}$

3. $5y \times 4y^4 = (5 \times 4) \times (y \times y^4) = 20y^{1+4} = 20y^5$

4. $2^2 \times 2^4 = 2^{2+4} = 2^6 = 64$

5. $m^8 \div m^5 = m^{8-5} = m^3$

6. $c^7 \div c = c^7 \div c^1 = c^{7-1} = c^6$

7. $\frac{24x^6}{8x^4} = \frac{24}{8} \times \frac{x^6}{x^4} = 3 \times x^{6-4} = 3x^2$

8. $\frac{9 \times 10^9}{3 \times 10^3} = \frac{9}{3} \times \frac{10^9}{10^3} = 3 \times 10^{9-3} = 3 \times 10^6 = 3,000,000$

9. $2^0 = 1$ (Anything to the power of zero is 1.)

1

0. $6 \times z^0 = 6 \times 1 = 6$

1

1. $4^{-3} = \frac{1}{4^3} = \frac{1}{4 \times 4 \times 4} = \frac{1}{64}$

1

2. $3x^{-3} = 3 \times \frac{1}{x^3} = \frac{3}{x^3}$

1

3. $(1-4)^{-2} = (-3)^{-2} = \frac{1}{(-3)^2} = \frac{1}{(-3) \times (-3)} = \frac{1}{9}$

1

4. $(2-3)^{-1} = (-1)^{-1} = \frac{1}{-1} = -1$

1

5. $x^3 \div x^{-5} = x^{3 - (-5)} = x^{3+5} = x^8$

1

6. $a^{-9} \div b^0 = a^{-9} \div 1 = a^{-9} = \frac{1}{a^9}$

1

7. $(3x)^{-3} = 3^{-3} \times x^{-3} = \frac{1}{3^3} \times \frac{1}{x^3} = \frac{1}{27} \times \frac{1}{x^3} = \frac{1}{27x^3}$

1

8. $9a^{-5} \times 4a^6 = (9 \times 4) \times (a^{-5} \times a^6) = 36 \times a^{-5+6} = 36a^1 = 36a$

1

9. $5x^2 \times 4x^0 \times 2x^{-6} = (5 \times 4 \times 2) \times (x^2 \times x^0 \times x^{-6}) = 40 \times x^{2+0-6} = 40x^{-4} = \frac{40}{x^4}$

2

0. $15 \times 10^4 \div (3 \times 10^{-2}) = \frac{15 \times 10^4}{3 \times 10^{-2}} = \frac{15}{3} \times \frac{10^4}{10^{-2}} = 5 \times 10^{4-(-2)} = 5 \times 10^{4+2} = 5 \times 10^6 = 5,000,000$

3. Final Answer

1. $10^9$

2. $a^{12}$

3. $20y^5$

4. $64$

5. $m^3$

6. $c^6$

7. $3x^2$

8. $3,000,000$

9. $1$

1

0. $6$

1

1. $\frac{1}{64}$

1

2. $\frac{3}{x^3}$

1

3. $\frac{1}{9}$

1

4. $-1$

1

5. $x^8$

1

6. $\frac{1}{a^9}$

1

7. $\frac{1}{27x^3}$

1

8. $36a$

1

9. $\frac{40}{x^4}$

2

0. $5,000,000$

Related problems in "Algebra"

We need to solve the equation $\frac{25}{3x} = \frac{3x}{9}$ for $x$.

EquationsSolving EquationsRational EquationsSquare Roots
2025/7/30

Simplify the expression $(8y^3x^{27}x^3)^{\frac{1}{3}}$.

ExponentsSimplificationAlgebraic ExpressionsRadicals
2025/7/30

We are given a 3x3 matrix $A$ and asked to find all the minors $|A_{ij}|$ of the matrix. The given m...

MatricesDeterminantsMinors
2025/7/29

A binary operation $*$ is defined on the set of real numbers $R$ by $m * n = m + n - \frac{1}{2}n$. ...

Binary OperationReal NumbersExpression Evaluation
2025/7/29

We are given a 4x4 matrix $A$ and asked to find its determinant $|A|$ and the (3,4) entry of its inv...

Linear AlgebraMatrix DeterminantMatrix InverseCofactor ExpansionAdjugate Matrix
2025/7/29

The problem is to solve the quadratic equation $55n^2 - 33n - 1940 = 0$ for the variable $n$.

Quadratic EquationsQuadratic FormulaRoots of Equation
2025/7/25

We need to solve the equation $\frac{x+6}{x+4} = \frac{-5}{3x}$ for $x$.

EquationsRational EquationsQuadratic EquationsSolving EquationsAlgebraic Manipulation
2025/7/24

The problem asks to factorize the quadratic expression $3x^2 - 2x - 1$.

Quadratic EquationsFactorizationAlgebraic Manipulation
2025/7/24

We are asked to solve four problems: (a) Expand and simplify the expression $6(2y-3) - 5(y+1)$. (b) ...

Algebraic SimplificationExponentsDifference of SquaresEquationsFactorization
2025/7/22

We are asked to simplify the expression $(a^{-2}b^3)^{-2}$, writing the answer with positive powers.

ExponentsSimplificationPower Rules
2025/7/22