We are given a 3x3 matrix $A$ and asked to find all the minors $|A_{ij}|$ of the matrix. The given matrix $A$ is $A = \begin{bmatrix} 3 & 1 & 0 \\ 2 & 4 & -2 \\ -3 & 5 & 2 \end{bmatrix}$.

AlgebraMatricesDeterminantsMinors
2025/7/29

1. Problem Description

We are given a 3x3 matrix AA and asked to find all the minors Aij|A_{ij}| of the matrix. The given matrix AA is
A=[310242352]A = \begin{bmatrix} 3 & 1 & 0 \\ 2 & 4 & -2 \\ -3 & 5 & 2 \end{bmatrix}.

2. Solution Steps

The minor Aij|A_{ij}| is the determinant of the matrix obtained by deleting the ii-th row and jj-th column of AA.
We need to compute all nine minors of AA:
A11|A_{11}|, A12|A_{12}|, A13|A_{13}|, A21|A_{21}|, A22|A_{22}|, A23|A_{23}|, A31|A_{31}|, A32|A_{32}|, A33|A_{33}|.
A11=4252=(4)(2)(2)(5)=8+10=18|A_{11}| = \begin{vmatrix} 4 & -2 \\ 5 & 2 \end{vmatrix} = (4)(2) - (-2)(5) = 8 + 10 = 18
A12=2232=(2)(2)(2)(3)=46=2|A_{12}| = \begin{vmatrix} 2 & -2 \\ -3 & 2 \end{vmatrix} = (2)(2) - (-2)(-3) = 4 - 6 = -2
A13=2435=(2)(5)(4)(3)=10+12=22|A_{13}| = \begin{vmatrix} 2 & 4 \\ -3 & 5 \end{vmatrix} = (2)(5) - (4)(-3) = 10 + 12 = 22
A21=1052=(1)(2)(0)(5)=20=2|A_{21}| = \begin{vmatrix} 1 & 0 \\ 5 & 2 \end{vmatrix} = (1)(2) - (0)(5) = 2 - 0 = 2
A22=3032=(3)(2)(0)(3)=60=6|A_{22}| = \begin{vmatrix} 3 & 0 \\ -3 & 2 \end{vmatrix} = (3)(2) - (0)(-3) = 6 - 0 = 6
A23=3135=(3)(5)(1)(3)=15+3=18|A_{23}| = \begin{vmatrix} 3 & 1 \\ -3 & 5 \end{vmatrix} = (3)(5) - (1)(-3) = 15 + 3 = 18
A31=1042=(1)(2)(0)(4)=20=2|A_{31}| = \begin{vmatrix} 1 & 0 \\ 4 & -2 \end{vmatrix} = (1)(-2) - (0)(4) = -2 - 0 = -2
A32=3022=(3)(2)(0)(2)=60=6|A_{32}| = \begin{vmatrix} 3 & 0 \\ 2 & -2 \end{vmatrix} = (3)(-2) - (0)(2) = -6 - 0 = -6
A33=3124=(3)(4)(1)(2)=122=10|A_{33}| = \begin{vmatrix} 3 & 1 \\ 2 & 4 \end{vmatrix} = (3)(4) - (1)(2) = 12 - 2 = 10

3. Final Answer

A11=18|A_{11}| = 18
A12=2|A_{12}| = -2
A13=22|A_{13}| = 22
A21=2|A_{21}| = 2
A22=6|A_{22}| = 6
A23=18|A_{23}| = 18
A31=2|A_{31}| = -2
A32=6|A_{32}| = -6
A33=10|A_{33}| = 10

Related problems in "Algebra"

We need to solve the equation $\frac{25}{3x} = \frac{3x}{9}$ for $x$.

EquationsSolving EquationsRational EquationsSquare Roots
2025/7/30

The problem requires simplifying various expressions involving exponents, multiplication, and divisi...

ExponentsSimplificationAlgebraic ExpressionsPowersDivisionMultiplication
2025/7/30

Simplify the expression $(8y^3x^{27}x^3)^{\frac{1}{3}}$.

ExponentsSimplificationAlgebraic ExpressionsRadicals
2025/7/30

A binary operation $*$ is defined on the set of real numbers $R$ by $m * n = m + n - \frac{1}{2}n$. ...

Binary OperationReal NumbersExpression Evaluation
2025/7/29

We are given a 4x4 matrix $A$ and asked to find its determinant $|A|$ and the (3,4) entry of its inv...

Linear AlgebraMatrix DeterminantMatrix InverseCofactor ExpansionAdjugate Matrix
2025/7/29

The problem is to solve the quadratic equation $55n^2 - 33n - 1940 = 0$ for the variable $n$.

Quadratic EquationsQuadratic FormulaRoots of Equation
2025/7/25

We need to solve the equation $\frac{x+6}{x+4} = \frac{-5}{3x}$ for $x$.

EquationsRational EquationsQuadratic EquationsSolving EquationsAlgebraic Manipulation
2025/7/24

The problem asks to factorize the quadratic expression $3x^2 - 2x - 1$.

Quadratic EquationsFactorizationAlgebraic Manipulation
2025/7/24

We are asked to solve four problems: (a) Expand and simplify the expression $6(2y-3) - 5(y+1)$. (b) ...

Algebraic SimplificationExponentsDifference of SquaresEquationsFactorization
2025/7/22

We are asked to simplify the expression $(a^{-2}b^3)^{-2}$, writing the answer with positive powers.

ExponentsSimplificationPower Rules
2025/7/22