Given the magnitudes of vectors $\vec{a}$ and $\vec{b}$ as $|\vec{a}| = 1$ and $|\vec{b}| = 3$, and the magnitude of their sum as $|\vec{a} + \vec{b}| = \sqrt{6}$, find the dot product of the two vectors, $\vec{a} \cdot \vec{b}$.

GeometryVectorsDot ProductVector MagnitudeGeometric Algebra
2025/5/11

1. Problem Description

Given the magnitudes of vectors a\vec{a} and b\vec{b} as a=1|\vec{a}| = 1 and b=3|\vec{b}| = 3, and the magnitude of their sum as a+b=6|\vec{a} + \vec{b}| = \sqrt{6}, find the dot product of the two vectors, ab\vec{a} \cdot \vec{b}.

2. Solution Steps

We know that
a+b2=(a+b)(a+b)|\vec{a} + \vec{b}|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}).
Expanding the dot product gives
a+b2=aa+2(ab)+bb|\vec{a} + \vec{b}|^2 = \vec{a} \cdot \vec{a} + 2(\vec{a} \cdot \vec{b}) + \vec{b} \cdot \vec{b}.
Since aa=a2\vec{a} \cdot \vec{a} = |\vec{a}|^2 and bb=b2\vec{b} \cdot \vec{b} = |\vec{b}|^2, we have
a+b2=a2+2(ab)+b2|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + 2(\vec{a} \cdot \vec{b}) + |\vec{b}|^2.
We are given a=1|\vec{a}| = 1, b=3|\vec{b}| = 3, and a+b=6|\vec{a} + \vec{b}| = \sqrt{6}. Plugging these values into the equation, we get
(6)2=(1)2+2(ab)+(3)2(\sqrt{6})^2 = (1)^2 + 2(\vec{a} \cdot \vec{b}) + (3)^2.
6=1+2(ab)+96 = 1 + 2(\vec{a} \cdot \vec{b}) + 9.
6=10+2(ab)6 = 10 + 2(\vec{a} \cdot \vec{b}).
2(ab)=6102(\vec{a} \cdot \vec{b}) = 6 - 10.
2(ab)=42(\vec{a} \cdot \vec{b}) = -4.
ab=2\vec{a} \cdot \vec{b} = -2.

3. Final Answer

ab=2\vec{a} \cdot \vec{b} = -2

Related problems in "Geometry"

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8

We are given a quadrilateral ABCD with the following angle measures: $\angle ABC = 14^{\circ}$, $\an...

QuadrilateralAnglesAngle SumReflex Angle
2025/6/8

The problem asks us to find the size of angle $d$ in the given diagram. The diagram shows a quadrila...

QuadrilateralsAnglesExterior AnglesInterior Angles
2025/6/8

The problem is to find the size of angle DAB in a quadrilateral ABCD. We are given that angle D = $8...

QuadrilateralAnglesGeometric Proof
2025/6/8

The problem asks to find the size of angle $a$ in the given quadrilateral. The other angles in the q...

QuadrilateralsAnglesPolygon Interior Angles
2025/6/8

We are given a triangle $ABD$ with a smaller triangle $DEC$ inside. Triangle $DEC$ is equilateral. A...

TrianglesAnglesEquilateral TriangleAngle Calculation
2025/6/8

We are given a triangle $ABC$ with a smaller equilateral triangle $DEC$ inside it. The angle $BAC$ i...

TrianglesAnglesGeometric ProofsEquilateral Triangle
2025/6/8

The problem states that triangle $DEC$ is an equilateral triangle and angle $BAC$ is $50$ degrees. T...

TrianglesAnglesEquilateral TriangleAngle Sum PropertySupplementary Angles
2025/6/8

The problem describes a triangle ABC with a smaller equilateral triangle DEC inside it. We are given...

TrianglesAnglesGeometric Proofs
2025/6/8