In triangle $OAB$, let $M$ be the midpoint of side $OA$, and let $N$ be the point that divides side $OB$ in the ratio $2:1$. Let $P$ be the intersection of line segments $AN$ and $BM$. Express $\vec{OP}$ in terms of $\vec{OA} = \vec{a}$ and $\vec{OB} = \vec{b}$.

GeometryVectorsLinear CombinationTriangleIntersection
2025/5/11

1. Problem Description

In triangle OABOAB, let MM be the midpoint of side OAOA, and let NN be the point that divides side OBOB in the ratio 2:12:1. Let PP be the intersection of line segments ANAN and BMBM. Express OP\vec{OP} in terms of OA=a\vec{OA} = \vec{a} and OB=b\vec{OB} = \vec{b}.

2. Solution Steps

Since PP lies on ANAN, we can express OP\vec{OP} as a linear combination of OA\vec{OA} and ON\vec{ON}:
OP=(1s)OA+sON\vec{OP} = (1 - s)\vec{OA} + s\vec{ON}
where ss is a scalar.
Since NN divides OBOB in the ratio 2:12:1, we have
ON=23OB=23b\vec{ON} = \frac{2}{3}\vec{OB} = \frac{2}{3}\vec{b}
Thus,
OP=(1s)a+s(23b)=(1s)a+2s3b\vec{OP} = (1 - s)\vec{a} + s\left(\frac{2}{3}\vec{b}\right) = (1 - s)\vec{a} + \frac{2s}{3}\vec{b}
Since PP lies on BMBM, we can express OP\vec{OP} as a linear combination of OB\vec{OB} and OM\vec{OM}:
OP=(1t)OB+tOM\vec{OP} = (1 - t)\vec{OB} + t\vec{OM}
where tt is a scalar.
Since MM is the midpoint of OAOA, we have
OM=12OA=12a\vec{OM} = \frac{1}{2}\vec{OA} = \frac{1}{2}\vec{a}
Thus,
OP=(1t)b+t(12a)=t2a+(1t)b\vec{OP} = (1 - t)\vec{b} + t\left(\frac{1}{2}\vec{a}\right) = \frac{t}{2}\vec{a} + (1 - t)\vec{b}
Now we have two expressions for OP\vec{OP}:
OP=(1s)a+2s3b=t2a+(1t)b\vec{OP} = (1 - s)\vec{a} + \frac{2s}{3}\vec{b} = \frac{t}{2}\vec{a} + (1 - t)\vec{b}
Since a\vec{a} and b\vec{b} are linearly independent, we can equate the coefficients:
1s=t21 - s = \frac{t}{2}
2s3=1t\frac{2s}{3} = 1 - t
From the first equation, t=2(1s)t = 2(1 - s). Substituting this into the second equation, we get
2s3=12(1s)=12+2s=2s1\frac{2s}{3} = 1 - 2(1 - s) = 1 - 2 + 2s = 2s - 1
2s=6s32s = 6s - 3
4s=34s = 3
s=34s = \frac{3}{4}
Now we can find tt:
t=2(134)=2(14)=12t = 2\left(1 - \frac{3}{4}\right) = 2\left(\frac{1}{4}\right) = \frac{1}{2}
Substituting s=34s = \frac{3}{4} into OP=(1s)a+2s3b\vec{OP} = (1 - s)\vec{a} + \frac{2s}{3}\vec{b}, we get
OP=(134)a+2(34)3b=14a+12b\vec{OP} = \left(1 - \frac{3}{4}\right)\vec{a} + \frac{2(\frac{3}{4})}{3}\vec{b} = \frac{1}{4}\vec{a} + \frac{1}{2}\vec{b}
Alternatively, substituting t=12t = \frac{1}{2} into OP=t2a+(1t)b\vec{OP} = \frac{t}{2}\vec{a} + (1 - t)\vec{b}, we get
OP=122a+(112)b=14a+12b\vec{OP} = \frac{\frac{1}{2}}{2}\vec{a} + \left(1 - \frac{1}{2}\right)\vec{b} = \frac{1}{4}\vec{a} + \frac{1}{2}\vec{b}

3. Final Answer

OP=14a+12b\vec{OP} = \frac{1}{4}\vec{a} + \frac{1}{2}\vec{b}

Related problems in "Geometry"

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8

We are given a quadrilateral ABCD with the following angle measures: $\angle ABC = 14^{\circ}$, $\an...

QuadrilateralAnglesAngle SumReflex Angle
2025/6/8

The problem asks us to find the size of angle $d$ in the given diagram. The diagram shows a quadrila...

QuadrilateralsAnglesExterior AnglesInterior Angles
2025/6/8

The problem is to find the size of angle DAB in a quadrilateral ABCD. We are given that angle D = $8...

QuadrilateralAnglesGeometric Proof
2025/6/8

The problem asks to find the size of angle $a$ in the given quadrilateral. The other angles in the q...

QuadrilateralsAnglesPolygon Interior Angles
2025/6/8

We are given a triangle $ABD$ with a smaller triangle $DEC$ inside. Triangle $DEC$ is equilateral. A...

TrianglesAnglesEquilateral TriangleAngle Calculation
2025/6/8

We are given a triangle $ABC$ with a smaller equilateral triangle $DEC$ inside it. The angle $BAC$ i...

TrianglesAnglesGeometric ProofsEquilateral Triangle
2025/6/8

The problem states that triangle $DEC$ is an equilateral triangle and angle $BAC$ is $50$ degrees. T...

TrianglesAnglesEquilateral TriangleAngle Sum PropertySupplementary Angles
2025/6/8