We need to compute the element $a_{11}$ of the matrix $A = (Q^T Q)^3$, where $Q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Linear AlgebraMatrix MultiplicationMatrix TransposeMatrix PowersIdentity Matrix
2025/5/14

1. Problem Description

We need to compute the element a11a_{11} of the matrix A=(QTQ)3A = (Q^T Q)^3, where
Q=(000020200002)Q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.

2. Solution Steps

First, we compute QTQQ^T Q:
QT=(002002000002)Q^T = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.
QTQ=(002002000002)(000020200002)=(400040004)=4I3Q^T Q = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = 4I_3,
where I3I_3 is the 3×33 \times 3 identity matrix.
Then we have
A=(QTQ)3=(4I3)3=43I33=64I3=(640006400064)A = (Q^T Q)^3 = (4I_3)^3 = 4^3 I_3^3 = 64 I_3 = \begin{pmatrix} 64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64 \end{pmatrix}.
The element a11a_{11} is the element in the first row and first column of the matrix AA.

3. Final Answer

a11=64a_{11} = 64.

Related problems in "Linear Algebra"

The problem states that $P = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $T = \begin{pmatrix} -3 \\ 1 \en...

VectorsMatrix OperationsVector Components
2025/6/24

We are given two matrices $P = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $T = \begin{pmatrix} -3 \\ ...

Matrix MultiplicationLinear TransformationsVectors
2025/6/24

We need to show that the dot product of a vector with itself is equal to the square of the magnitude...

VectorsDot ProductMagnitudeVector Spaces
2025/6/15

We are given a matrix $A = \begin{pmatrix} 5 & a \\ -1 & -5 \end{pmatrix}$. We need to find the valu...

Matrix ExponentialsEigenvaluesTraceCharacteristic Equation
2025/5/14

The problem asks which of the given sets $S_1$, $S_2$, and $S_3$ form a basis for $R^3$. $S_1 = \{(...

Linear AlgebraBasisVector SpaceDeterminantLinear Independence
2025/5/14

Let $A: R^2 \to R^2$ be a linear operator. Its matrix representation in the standard basis $(e_1, e_...

Linear TransformationsChange of BasisMatrix RepresentationEigenvalues and Eigenvectors
2025/5/14

The problem provides a matrix $A$ and asks to find the element $a_{12}$.

MatricesMatrix Elements
2025/5/13

The problem gives a matrix $R = \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix}$ and asks to compute s...

MatrixDeterminant2x2 Matrix
2025/5/6

The problem asks to identify the element $a_{12}$ of the given matrix $A$. The matrix $A$ is given a...

MatricesMatrix Elements
2025/4/1

The problem asks to determine the number of rows in the given matrix $B$. The matrix $B$ is defined ...

MatrixMatrix DimensionsRows
2025/4/1