We need to compute the element $a_{11}$ of the matrix $A = (Q^T Q)^3$, where $Q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Linear AlgebraMatrix MultiplicationMatrix TransposeMatrix PowersIdentity Matrix
2025/5/14

1. Problem Description

We need to compute the element a11a_{11} of the matrix A=(QTQ)3A = (Q^T Q)^3, where
Q=(000020200002)Q = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.

2. Solution Steps

First, we compute QTQQ^T Q:
QT=(002002000002)Q^T = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}.
QTQ=(002002000002)(000020200002)=(400040004)=4I3Q^T Q = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = 4I_3,
where I3I_3 is the 3×33 \times 3 identity matrix.
Then we have
A=(QTQ)3=(4I3)3=43I33=64I3=(640006400064)A = (Q^T Q)^3 = (4I_3)^3 = 4^3 I_3^3 = 64 I_3 = \begin{pmatrix} 64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64 \end{pmatrix}.
The element a11a_{11} is the element in the first row and first column of the matrix AA.

3. Final Answer

a11=64a_{11} = 64.