First, we express e1 and e2 in terms of t1 and t2. We have the following system of equations:
t1=e1+e2 t2=e1−e2 Adding these two equations gives:
t1+t2=2e1 So,
e1=21(t1+t2). Subtracting the second equation from the first gives:
t1−t2=2e2 So,
e2=21(t1−t2). Let the matrix of A with respect to the standard basis (e1,e2) be M=(acbd). This means that A(e1)=ae1+ce2 A(e2)=be1+de2. We want to find the matrix of A with respect to the basis (t1,t2). Let this matrix be M′=(prqs). Then we must have: A(t1)=pt1+rt2 A(t2)=qt1+st2 Now, we express A(t1) and A(t2) in terms of t1 and t2: A(t1)=A(e1+e2)=A(e1)+A(e2)=(ae1+ce2)+(be1+de2)=(a+b)e1+(c+d)e2. Substituting e1=21(t1+t2) and e2=21(t1−t2), we get: A(t1)=(a+b)21(t1+t2)+(c+d)21(t1−t2)=21[(a+b)+(c+d)]t1+21[(a+b)−(c+d)]t2. Thus,
p=21(a+b+c+d) r=21(a+b−c−d). Similarly,
A(t2)=A(e1−e2)=A(e1)−A(e2)=(ae1+ce2)−(be1+de2)=(a−b)e1+(c−d)e2. Substituting e1=21(t1+t2) and e2=21(t1−t2), we get: A(t2)=(a−b)21(t1+t2)+(c−d)21(t1−t2)=21[(a−b)+(c−d)]t1+21[(a−b)−(c−d)]t2. Thus,
q=21(a−b+c−d) s=21(a−b−c+d). M′=(21(a+b+c+d)21(a+b−c−d)21(a−b+c−d)21(a−b−c+d)) The sum of the elements of the matrix is
21(a+b+c+d)+21(a−b+c−d)+21(a+b−c−d)+21(a−b−c+d)=21(4a)=2a. Since we need the sum of all elements of the matrix as a *single integer number*, we need to consider the case when A is the sum operator. Then A(x,y)=x+y. Thus A(e1)=A(1,0)=1+0=1, and A(e2)=A(0,1)=0+1=1. So Ae1=1e1+0e2 and Ae2=1e1+0e2. Then a=1,b=1,c=0,d=0. The sum of the matrix elements is then 2a=2(1)=2.