The problem asks us to find the inverse of the matrix $B = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 3 & 1 \\ 0 & -2 & 4 \end{pmatrix}$ using Gaussian elimination with pivoting.

AlgebraLinear AlgebraMatrix InverseGaussian EliminationPivoting
2025/3/23

1. Problem Description

The problem asks us to find the inverse of the matrix B=(210131024)B = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 3 & 1 \\ 0 & -2 & 4 \end{pmatrix} using Gaussian elimination with pivoting.

2. Solution Steps

We start by augmenting the matrix BB with the identity matrix I3I_3:
[BI3]=(210100131010024001)[B | I_3] = \begin{pmatrix} 2 & -1 & 0 & | & 1 & 0 & 0 \\ 1 & 3 & 1 & | & 0 & 1 & 0 \\ 0 & -2 & 4 & | & 0 & 0 & 1 \end{pmatrix}.
Since we want to use pivoting, we need to check if the absolute value of the first element of the first row is the largest among the elements in the first column. Here we have 2>1>0|2| > |1| > |0|. Thus, no row exchange is needed.
Divide the first row by 2:
(11/201/200131010024001)\begin{pmatrix} 1 & -1/2 & 0 & | & 1/2 & 0 & 0 \\ 1 & 3 & 1 & | & 0 & 1 & 0 \\ 0 & -2 & 4 & | & 0 & 0 & 1 \end{pmatrix}.
Subtract the first row from the second row:
(11/201/20007/211/210024001)\begin{pmatrix} 1 & -1/2 & 0 & | & 1/2 & 0 & 0 \\ 0 & 7/2 & 1 & | & -1/2 & 1 & 0 \\ 0 & -2 & 4 & | & 0 & 0 & 1 \end{pmatrix}.
Multiply the second row by 2/72/7:
(11/201/200012/71/72/70024001)\begin{pmatrix} 1 & -1/2 & 0 & | & 1/2 & 0 & 0 \\ 0 & 1 & 2/7 & | & -1/7 & 2/7 & 0 \\ 0 & -2 & 4 & | & 0 & 0 & 1 \end{pmatrix}.
Add 2 times the second row to the third row:
(11/201/200012/71/72/700032/72/74/71)\begin{pmatrix} 1 & -1/2 & 0 & | & 1/2 & 0 & 0 \\ 0 & 1 & 2/7 & | & -1/7 & 2/7 & 0 \\ 0 & 0 & 32/7 & | & -2/7 & 4/7 & 1 \end{pmatrix}.
Multiply the third row by 7/327/32:
(11/201/200012/71/72/700011/161/87/32)\begin{pmatrix} 1 & -1/2 & 0 & | & 1/2 & 0 & 0 \\ 0 & 1 & 2/7 & | & -1/7 & 2/7 & 0 \\ 0 & 0 & 1 & | & -1/16 & 1/8 & 7/32 \end{pmatrix}.
Subtract 2/72/7 times the third row from the second row:
(11/201/2000101/7+2/7(1/16)2/72/7(1/8)2/7(7/32)0011/161/87/32)\begin{pmatrix} 1 & -1/2 & 0 & | & 1/2 & 0 & 0 \\ 0 & 1 & 0 & | & -1/7 + 2/7(1/16) & 2/7 - 2/7(1/8) & -2/7(7/32) \\ 0 & 0 & 1 & | & -1/16 & 1/8 & 7/32 \end{pmatrix}.
Simplifying the second row gives:
(11/201/2000101/7+1/562/71/281/160011/161/87/32)\begin{pmatrix} 1 & -1/2 & 0 & | & 1/2 & 0 & 0 \\ 0 & 1 & 0 & | & -1/7 + 1/56 & 2/7 - 1/28 & -1/16 \\ 0 & 0 & 1 & | & -1/16 & 1/8 & 7/32 \end{pmatrix}.
(11/201/2000107/567/281/160011/161/87/32)\begin{pmatrix} 1 & -1/2 & 0 & | & 1/2 & 0 & 0 \\ 0 & 1 & 0 & | & -7/56 & 7/28 & -1/16 \\ 0 & 0 & 1 & | & -1/16 & 1/8 & 7/32 \end{pmatrix}.
(11/201/2000101/81/41/160011/161/87/32)\begin{pmatrix} 1 & -1/2 & 0 & | & 1/2 & 0 & 0 \\ 0 & 1 & 0 & | & -1/8 & 1/4 & -1/16 \\ 0 & 0 & 1 & | & -1/16 & 1/8 & 7/32 \end{pmatrix}.
Add 1/21/2 times the second row to the first row:
(1001/21/161/81/320101/81/41/160011/161/87/32)\begin{pmatrix} 1 & 0 & 0 & | & 1/2 - 1/16 & 1/8 & -1/32 \\ 0 & 1 & 0 & | & -1/8 & 1/4 & -1/16 \\ 0 & 0 & 1 & | & -1/16 & 1/8 & 7/32 \end{pmatrix}.
(1007/161/81/320101/81/41/160011/161/87/32)\begin{pmatrix} 1 & 0 & 0 & | & 7/16 & 1/8 & -1/32 \\ 0 & 1 & 0 & | & -1/8 & 1/4 & -1/16 \\ 0 & 0 & 1 & | & -1/16 & 1/8 & 7/32 \end{pmatrix}.

3. Final Answer

B1=(7/161/81/321/81/41/161/161/87/32)B^{-1} = \begin{pmatrix} 7/16 & 1/8 & -1/32 \\ -1/8 & 1/4 & -1/16 \\ -1/16 & 1/8 & 7/32 \end{pmatrix}
or
B1=(14/324/321/324/328/322/322/324/327/32)=132(1441482247)B^{-1} = \begin{pmatrix} 14/32 & 4/32 & -1/32 \\ -4/32 & 8/32 & -2/32 \\ -2/32 & 4/32 & 7/32 \end{pmatrix} = \frac{1}{32}\begin{pmatrix} 14 & 4 & -1 \\ -4 & 8 & -2 \\ -2 & 4 & 7 \end{pmatrix}.

Related problems in "Algebra"

We are given that $a$ and $b$ are whole numbers such that $a^b = 121$. We need to evaluate $(a-1)^{b...

ExponentsEquationsInteger Solutions
2025/4/6

The problem is to solve the equation $(x+1)^{\log(x+1)} = 100(x+1)$. It is assumed the base of the ...

LogarithmsEquationsExponentsSolving EquationsAlgebraic Manipulation
2025/4/6

The problem asks us to find the values of $k$ for which the quadratic equation $x^2 - kx + 3 - k = 0...

Quadratic EquationsDiscriminantInequalitiesReal Roots
2025/4/5

The problem states that quadrilateral $ABCD$ has a perimeter of 95 centimeters. The side lengths are...

Linear EquationsGeometryPerimeterQuadrilaterals
2025/4/5

Given that $y = 2x$ and $3^{x+y} = 27$, we need to find the value of $x$.

EquationsExponentsSubstitution
2025/4/5

We are given the equation $\frac{6x+m}{2x^2+7x-15} = \frac{4}{x+5} - \frac{2}{2x-3}$, and we need to...

EquationsRational ExpressionsSolving EquationsSimplificationFactorization
2025/4/5

We are given the equation $\frac{6x+m}{2x^2+7x-15} = \frac{4}{x+5} - \frac{2}{2x-3}$ and we need to ...

EquationsRational ExpressionsSolving for a VariableFactoring
2025/4/5

We are given the equation $\frac{3x+4}{x^2-3x+2} = \frac{A}{x-1} + \frac{B}{x-2}$ and we are asked t...

Partial FractionsAlgebraic ManipulationEquations
2025/4/5

We are given a polynomial $x^3 - 2x^2 + mx + 4$ and told that when it is divided by $x-3$, the remai...

PolynomialsRemainder TheoremAlgebraic Equations
2025/4/5

Given the quadratic equation $4x^2 - 9x - 16 = 0$, where $\alpha$ and $\beta$ are its roots, we need...

Quadratic EquationsRoots of EquationsVieta's Formulas
2025/4/5