The problem asks to find the mass $m$ and the center of mass $(\bar{x}, \bar{y})$ of the lamina bounded by the curves $x=0$, $x=4$, $y=0$, $y=3$, with density function $\delta(x, y) = y+1$.

Applied MathematicsCalculusMultivariable CalculusCenter of MassDouble Integrals
2025/5/25

1. Problem Description

The problem asks to find the mass mm and the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}) of the lamina bounded by the curves x=0x=0, x=4x=4, y=0y=0, y=3y=3, with density function δ(x,y)=y+1\delta(x, y) = y+1.

2. Solution Steps

First, we calculate the mass mm using the formula:
m=Rδ(x,y)dAm = \iint_R \delta(x, y) \, dA
In this case, the region RR is a rectangle defined by 0x40 \le x \le 4 and 0y30 \le y \le 3. Thus,
m=0403(y+1)dydxm = \int_0^4 \int_0^3 (y+1) \, dy \, dx
m=04[y22+y]03dxm = \int_0^4 \left[ \frac{y^2}{2} + y \right]_0^3 \, dx
m=04(92+3)dxm = \int_0^4 \left( \frac{9}{2} + 3 \right) \, dx
m=04152dxm = \int_0^4 \frac{15}{2} \, dx
m=152[x]04m = \frac{15}{2} \left[ x \right]_0^4
m=152(4)m = \frac{15}{2} (4)
m=30m = 30
Next, we calculate the moments MxM_x and MyM_y:
Mx=Ryδ(x,y)dAM_x = \iint_R y \delta(x, y) \, dA
My=Rxδ(x,y)dAM_y = \iint_R x \delta(x, y) \, dA
Mx=0403y(y+1)dydxM_x = \int_0^4 \int_0^3 y(y+1) \, dy \, dx
Mx=0403(y2+y)dydxM_x = \int_0^4 \int_0^3 (y^2 + y) \, dy \, dx
Mx=04[y33+y22]03dxM_x = \int_0^4 \left[ \frac{y^3}{3} + \frac{y^2}{2} \right]_0^3 \, dx
Mx=04(273+92)dxM_x = \int_0^4 \left( \frac{27}{3} + \frac{9}{2} \right) \, dx
Mx=04(9+92)dxM_x = \int_0^4 \left( 9 + \frac{9}{2} \right) \, dx
Mx=04272dxM_x = \int_0^4 \frac{27}{2} \, dx
Mx=272[x]04M_x = \frac{27}{2} \left[ x \right]_0^4
Mx=272(4)M_x = \frac{27}{2} (4)
Mx=54M_x = 54
My=0403x(y+1)dydxM_y = \int_0^4 \int_0^3 x(y+1) \, dy \, dx
My=04x03(y+1)dydxM_y = \int_0^4 x \int_0^3 (y+1) \, dy \, dx
My=04x[y22+y]03dxM_y = \int_0^4 x \left[ \frac{y^2}{2} + y \right]_0^3 \, dx
My=04x(92+3)dxM_y = \int_0^4 x \left( \frac{9}{2} + 3 \right) \, dx
My=04x(152)dxM_y = \int_0^4 x \left( \frac{15}{2} \right) \, dx
My=15204xdxM_y = \frac{15}{2} \int_0^4 x \, dx
My=152[x22]04M_y = \frac{15}{2} \left[ \frac{x^2}{2} \right]_0^4
My=152(162)M_y = \frac{15}{2} \left( \frac{16}{2} \right)
My=152(8)M_y = \frac{15}{2} (8)
My=60M_y = 60
Finally, we can calculate the center of mass (xˉ,yˉ)(\bar{x}, \bar{y}):
xˉ=Mym\bar{x} = \frac{M_y}{m}
yˉ=Mxm\bar{y} = \frac{M_x}{m}
xˉ=6030=2\bar{x} = \frac{60}{30} = 2
yˉ=5430=95\bar{y} = \frac{54}{30} = \frac{9}{5}

3. Final Answer

The mass mm is 3030. The center of mass (xˉ,yˉ)(\bar{x}, \bar{y}) is (2,95)(2, \frac{9}{5}).

Related problems in "Applied Mathematics"

We need to calculate the Yield to Maturity (YTM) of a bond given the following information: Face Val...

FinanceBond ValuationYield to Maturity (YTM)Financial ModelingApproximation
2025/7/26

We are given a simply supported beam AB of length $L$, carrying a point load $W$ at a distance $a$ f...

Structural MechanicsBeam TheoryStrain EnergyDeflectionCastigliano's TheoremIntegration
2025/7/26

The problem asks us to determine the degree of static indeterminacy of a rigid plane frame. We need ...

Structural AnalysisStaticsIndeterminacyPlane Frame
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisBending MomentShear ForceStress CalculationEngineering Mechanics
2025/7/26

The problem asks us to show that the element stiffness matrix for a pin-jointed structure is given b...

Structural MechanicsFinite Element AnalysisStiffness MatrixLinear AlgebraEngineering
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisFrame AnalysisStress CalculationEngineering Mechanics
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural AnalysisStiffness MethodFinite Element AnalysisFrame AnalysisStress CalculationEngineering Mechanics
2025/7/26

The problem asks to determine the stiffness component and find the internal stresses of a given fram...

Structural EngineeringStiffness MethodFinite Element AnalysisFrame AnalysisStructural MechanicsFixed-End MomentsElement Stiffness Matrix
2025/7/26

The problem asks us to determine the stiffness component and find the internal stresses of a given f...

Structural AnalysisStiffness MethodFrame AnalysisFinite Element MethodEngineering Mechanics
2025/7/26

The problem is a cost accounting exercise for the company SETEX. We are given the indirect costs (fi...

Cost AccountingLinear EquationsPercentage CalculationsImputationFixed CostsVariable Costs
2025/7/25