We are asked to find the moments of inertia $I_x$, $I_y$, and $I_z$ for the lamina bounded by the given curves and with the indicated density $\delta$ for problem 11. The curves are $y = \sqrt{x}$, $x = 9$, and $y = 0$. The density is $\delta(x, y) = x + y$.

Applied MathematicsCalculusMultiple IntegralsMoments of InertiaDensityLamina
2025/5/25

1. Problem Description

We are asked to find the moments of inertia IxI_x, IyI_y, and IzI_z for the lamina bounded by the given curves and with the indicated density δ\delta for problem
1

1. The curves are $y = \sqrt{x}$, $x = 9$, and $y = 0$. The density is $\delta(x, y) = x + y$.

2. Solution Steps

First, we need to determine the limits of integration. The region is bounded by y=xy = \sqrt{x}, x=9x = 9, and y=0y = 0. This means 0yx0 \le y \le \sqrt{x} and 0x90 \le x \le 9. We can also describe the region as 0x90 \le x \le 9 and 0yx0 \le y \le \sqrt{x}.
The formulas for the moments of inertia are:
Ix=y2δ(x,y)dAI_x = \iint y^2 \delta(x, y) \, dA
Iy=x2δ(x,y)dAI_y = \iint x^2 \delta(x, y) \, dA
Iz=(x2+y2)δ(x,y)dAI_z = \iint (x^2 + y^2) \delta(x, y) \, dA
We have δ(x,y)=x+y\delta(x, y) = x + y.
Now, we calculate IxI_x:
Ix=090xy2(x+y)dydx=090x(xy2+y3)dydxI_x = \int_0^9 \int_0^{\sqrt{x}} y^2 (x + y) \, dy \, dx = \int_0^9 \int_0^{\sqrt{x}} (xy^2 + y^3) \, dy \, dx
Ix=09[xy33+y44]0xdx=09(x(x3/2)3+x24)dx=09(x5/23+x24)dxI_x = \int_0^9 \left[ \frac{xy^3}{3} + \frac{y^4}{4} \right]_0^{\sqrt{x}} dx = \int_0^9 \left( \frac{x(x^{3/2})}{3} + \frac{x^2}{4} \right) dx = \int_0^9 \left( \frac{x^{5/2}}{3} + \frac{x^2}{4} \right) dx
Ix=[2x7/221+x312]09=2(9)7/221+9312=2(32)7/221+72912=2(37)21+2434=2(2187)21+2434=437421+2434=14587+2434=4(1458)+7(243)28=5832+170128=753328I_x = \left[ \frac{2x^{7/2}}{21} + \frac{x^3}{12} \right]_0^9 = \frac{2(9)^{7/2}}{21} + \frac{9^3}{12} = \frac{2(3^2)^{7/2}}{21} + \frac{729}{12} = \frac{2(3^7)}{21} + \frac{243}{4} = \frac{2(2187)}{21} + \frac{243}{4} = \frac{4374}{21} + \frac{243}{4} = \frac{1458}{7} + \frac{243}{4} = \frac{4(1458) + 7(243)}{28} = \frac{5832 + 1701}{28} = \frac{7533}{28}
Now, we calculate IyI_y:
Iy=090xx2(x+y)dydx=090x(x3+x2y)dydxI_y = \int_0^9 \int_0^{\sqrt{x}} x^2 (x + y) \, dy \, dx = \int_0^9 \int_0^{\sqrt{x}} (x^3 + x^2y) \, dy \, dx
Iy=09[x3y+x2y22]0xdx=09(x3x+x2(x)2)dx=09(x7/2+x32)dxI_y = \int_0^9 \left[ x^3y + \frac{x^2y^2}{2} \right]_0^{\sqrt{x}} dx = \int_0^9 \left( x^3\sqrt{x} + \frac{x^2(x)}{2} \right) dx = \int_0^9 \left( x^{7/2} + \frac{x^3}{2} \right) dx
Iy=[2x9/29+x48]09=2(9)9/29+948=2(32)9/29+65618=2(39)9+65618=2(19683)9+65618=393669+65618=131223+65618=8(13122)+3(6561)24=104976+1968324=12465924=415538I_y = \left[ \frac{2x^{9/2}}{9} + \frac{x^4}{8} \right]_0^9 = \frac{2(9)^{9/2}}{9} + \frac{9^4}{8} = \frac{2(3^2)^{9/2}}{9} + \frac{6561}{8} = \frac{2(3^9)}{9} + \frac{6561}{8} = \frac{2(19683)}{9} + \frac{6561}{8} = \frac{39366}{9} + \frac{6561}{8} = \frac{13122}{3} + \frac{6561}{8} = \frac{8(13122) + 3(6561)}{24} = \frac{104976 + 19683}{24} = \frac{124659}{24} = \frac{41553}{8}
Now, we calculate IzI_z:
Iz=090x(x2+y2)(x+y)dydx=090x(x3+x2y+xy2+y3)dydxI_z = \int_0^9 \int_0^{\sqrt{x}} (x^2 + y^2) (x + y) \, dy \, dx = \int_0^9 \int_0^{\sqrt{x}} (x^3 + x^2y + xy^2 + y^3) \, dy \, dx
Iz=09[x3y+x2y22+xy33+y44]0xdx=09(x3x+x2(x)2+x(x3/2)3+x24)dx=09(x7/2+x32+x5/23+x24)dxI_z = \int_0^9 \left[ x^3y + \frac{x^2y^2}{2} + \frac{xy^3}{3} + \frac{y^4}{4} \right]_0^{\sqrt{x}} dx = \int_0^9 \left( x^3\sqrt{x} + \frac{x^2(x)}{2} + \frac{x(x^{3/2})}{3} + \frac{x^2}{4} \right) dx = \int_0^9 \left( x^{7/2} + \frac{x^3}{2} + \frac{x^{5/2}}{3} + \frac{x^2}{4} \right) dx
Iz=[2x9/29+x48+2x7/221+x312]09=2(9)9/29+948+2(9)7/221+9312=2(39)9+65618+2(37)21+72912=393669+65618+437421+2434=131223+65618+14587+2434=73584+19683+4914+170124=104976+6561×3+1458×247+243×624I_z = \left[ \frac{2x^{9/2}}{9} + \frac{x^4}{8} + \frac{2x^{7/2}}{21} + \frac{x^3}{12} \right]_0^9 = \frac{2(9)^{9/2}}{9} + \frac{9^4}{8} + \frac{2(9)^{7/2}}{21} + \frac{9^3}{12} = \frac{2(3^9)}{9} + \frac{6561}{8} + \frac{2(3^7)}{21} + \frac{729}{12} = \frac{39366}{9} + \frac{6561}{8} + \frac{4374}{21} + \frac{243}{4} = \frac{13122}{3} + \frac{6561}{8} + \frac{1458}{7} + \frac{243}{4} = \frac{73584+19683+4914+1701}{24} = \frac{104976 + 6561 \times 3 + 1458 \times \frac{24}{7} + 243 \times 6}{24}
=131223+65618+14587+2434=366728+65618+583221+170128= \frac{13122}{3} + \frac{6561}{8} + \frac{1458}{7} + \frac{243}{4} = \frac{36672}{8} + \frac{6561}{8} + \frac{5832}{21} + \frac{1701}{28}
Iz=Ix+Iy=753328+415538=2(7533)+7(41553)56=15066+29087156=30593756I_z = I_x + I_y = \frac{7533}{28} + \frac{41553}{8} = \frac{2(7533) + 7(41553)}{56} = \frac{15066 + 290871}{56} = \frac{305937}{56}

3. Final Answer

Ix=753328I_x = \frac{7533}{28}
Iy=415538I_y = \frac{41553}{8}
Iz=30593756I_z = \frac{305937}{56}

Related problems in "Applied Mathematics"

A rectangular parallelepiped-shaped container has a length of 80 cm and a width of 30 cm. 40 identic...

Volume CalculationUnit ConversionRate of ChangeWord Problem
2025/6/3

The problem asks us to establish the opening balance sheet based on the provided information as of J...

AccountingBalance SheetIncome StatementTrial BalanceFinancial Statements
2025/6/2

The problem asks which color code corresponds to a $3.9 k\Omega$ resistor.

ElectronicsResistorsColor CodeUnits ConversionEngineering
2025/6/1

The problem asks which color code corresponds to a $3.9 k\Omega$ resistor, given the standard resist...

ElectronicsResistor Color CodeOhm's Law
2025/6/1

The problem is to determine the reactions at supports A and D for a simply supported beam subjected ...

StaticsStructural MechanicsBeam AnalysisEquilibriumMoment Calculation
2025/6/1

Two people, one on a motorcycle and one on a bicycle, start from two cities that are 450 km apart an...

Word ProblemDistance, Rate, and TimeLinear Equations
2025/5/31

A convex lens has a focal length of 15 cm. As shown in the diagram, the lens is placed on a laborato...

OpticsLens FormulaRay DiagramsMagnification
2025/5/31

The problem asks to find the AC signal output, $V_0$, of the given circuit. The circuit consists of ...

Circuit AnalysisAC SignalsDiodeApproximation
2025/5/30

The problem asks to find the AC signal output $V_0$ of the given circuit. The circuit consists of a ...

Circuit AnalysisElectronicsDiodesAC SignalVoltage DividerOhm's Law
2025/5/29

The problem asks us to find the AC signal output, $V_o$, of the given circuit. The circuit consists ...

Circuit AnalysisDiode CircuitsAC SignalsClipping CircuitsSignal Processing
2025/5/29