The problem is to solve the equation for $x$, where $a$, $b$, and $c$ are real numbers: $\frac{a}{c} - \frac{ax}{cx-1} = \frac{c}{a} - \frac{cx}{ax-1}$.

AlgebraEquationsAlgebraic ManipulationRational ExpressionsVariable SolvingReal Numbers
2025/5/25

1. Problem Description

The problem is to solve the equation for xx, where aa, bb, and cc are real numbers:
acaxcx1=cacxax1\frac{a}{c} - \frac{ax}{cx-1} = \frac{c}{a} - \frac{cx}{ax-1}.

2. Solution Steps

The given equation is:
acaxcx1=cacxax1\frac{a}{c} - \frac{ax}{cx-1} = \frac{c}{a} - \frac{cx}{ax-1}
First, we rearrange the terms:
acca=axcx1cxax1\frac{a}{c} - \frac{c}{a} = \frac{ax}{cx-1} - \frac{cx}{ax-1}
a2c2ac=ax(ax1)cx(cx1)(cx1)(ax1)\frac{a^2 - c^2}{ac} = \frac{ax(ax-1) - cx(cx-1)}{(cx-1)(ax-1)}
a2c2ac=a2x2axc2x2+cxacx2axcx+1\frac{a^2 - c^2}{ac} = \frac{a^2x^2 - ax - c^2x^2 + cx}{acx^2 - ax - cx + 1}
a2c2ac=(a2c2)x2(ac)xacx2(a+c)x+1\frac{a^2 - c^2}{ac} = \frac{(a^2 - c^2)x^2 - (a-c)x}{acx^2 - (a+c)x + 1}
If a=ca=c, then the left side is

0. Also, the numerator of the right side is $(a^2-c^2)x^2 - (a-c)x = 0$. Then $x=0$ is a solution. If $a=c$, then the equation becomes $\frac{a}{a} - \frac{ax}{ax-1} = \frac{a}{a} - \frac{ax}{ax-1}$ which simplifies to $1 - \frac{ax}{ax-1} = 1 - \frac{ax}{ax-1}$, meaning any $x$ such that $ax-1 \ne 0$ is a solution. In other words, any $x \ne \frac{1}{a}$ is a solution.

If aca \ne c and aca \ne -c, then a2c20a^2 - c^2 \ne 0. Then
a+cac=(a+c)x2xacx2(a+c)x+1\frac{a+c}{ac} = \frac{(a+c)x^2 - x}{acx^2 - (a+c)x + 1}. Since a+c0a+c \ne 0:
1ac=x21a+cxacx2(a+c)x+1\frac{1}{ac} = \frac{x^2 - \frac{1}{a+c}x}{acx^2 - (a+c)x + 1}
acx2(a+c)x+1=acx2aca+cxacx^2 - (a+c)x + 1 = acx^2 - \frac{ac}{a+c}x
(a+c)x+1=aca+cx-(a+c)x + 1 = - \frac{ac}{a+c}x
1=(a+caca+c)x1 = (a+c - \frac{ac}{a+c})x
1=((a+c)2aca+c)x1 = (\frac{(a+c)^2 - ac}{a+c})x
1=(a2+2ac+c2aca+c)x1 = (\frac{a^2+2ac+c^2 - ac}{a+c})x
1=(a2+ac+c2a+c)x1 = (\frac{a^2+ac+c^2}{a+c})x
x=a+ca2+ac+c2x = \frac{a+c}{a^2 + ac + c^2}
If a=ca = -c, then a2c2=0a^2-c^2 = 0 and ac=2c0a-c = -2c \ne 0. So the equation becomes 0=2cxacx20x+10 = \frac{-2cx}{acx^2 - 0x + 1}, which means x=0x = 0.

3. Final Answer

If a=ca=c, any x1ax \ne \frac{1}{a} is a solution.
If a=ca = -c, x=0x = 0.
If a2c2a^2 \ne c^2, then x=a+ca2+ac+c2x = \frac{a+c}{a^2 + ac + c^2}.

Related problems in "Algebra"

a) Find the gradient and y-intercept of the line given by the equation $x + 2y = 14$. b) Find the eq...

Linear EquationsSlope-Intercept FormPartial FractionsCoordinate Geometry
2025/6/9

We are given a set of math problems. a) (i) Express 5630 in standard form. (ii) Express 16346000000 ...

Scientific NotationEngineering NotationPolynomialsSimplificationRemainder TheoremSimultaneous EquationsLogarithmsLinear Equations
2025/6/9

The problem provides two real numbers $a$ and $b$ such that $a = 2 + \sqrt{3}$ and $ab = -\sqrt{3}$....

Algebraic ManipulationInequalitiesRationalizationSquare Roots
2025/6/9

The problem consists of two parts. Part 1: There are three different equilateral triangles made of c...

Algebraic ExpressionsGeometric PatternsProblem Solving
2025/6/9

We are given four problems: a) i. Show that $f(x) = \sqrt{x}$ is not a function using the vertical l...

FunctionsVertical Line TestRangeLinear FunctionsInverse Functions
2025/6/9

Solve the quadratic equation $x^2 + 4x + 1 = 0$ by completing the square.

Quadratic EquationsCompleting the SquareAlgebraic Manipulation
2025/6/9

The problem asks us to resolve the rational function $\frac{4x-3}{(x+1)^2}$ into partial fractions.

Partial FractionsRational FunctionsAlgebraic Manipulation
2025/6/9

The problem asks to simplify the given expression: $\frac{x^2y^3 + xy^2}{xy}$.

SimplificationAlgebraic ExpressionsFactoringPolynomials
2025/6/9

The problem asks us to evaluate the expression $3pq^3r^3$ when $p=\frac{2}{3}$, $q=-2$, and $r=-1$.

Algebraic ExpressionsSubstitutionExponentsEvaluation
2025/6/9

The problem is to factor the given expression $9m^5n^2 + 12m^3n$.

FactoringGreatest Common FactorPolynomials
2025/6/9