First, we factor the denominator m3−27 using the difference of cubes formula: m3−27=m3−33=(m−3)(m2+3m+9). Now, rewrite the given equation with the factored denominator:
(m−3)(m2+3m+9)2mx(m+1)+3x−m−3x+m2+3m+9x+1=0 Next, we find a common denominator for all the terms, which is (m−3)(m2+3m+9): (m−3)(m2+3m+9)2mx(m+1)+3x−(m−3)(m2+3m+9)x(m2+3m+9)+(m−3)(m2+3m+9)(x+1)(m−3)=0 Combine the numerators over the common denominator:
(m−3)(m2+3m+9)2mx(m+1)+3x−x(m2+3m+9)+(x+1)(m−3)=0 For the fraction to be zero, the numerator must be zero:
2mx(m+1)+3x−x(m2+3m+9)+(x+1)(m−3)=0 Expand the terms:
2m2x+2mx+3x−xm2−3mx−9x+xm−3x+m−3=0 Combine like terms:
(2m2−m2)x+(2m−3m+m)x+(3−9−3)x+m−3=0 m2x+0x−9x+m−3=0 m2x−9x+m−3=0 (m2−9)x=3−m Factor the difference of squares:
(m−3)(m+3)x=3−m (m−3)(m+3)x=−(m−3) Now, we can solve for x: If m=3, divide both sides by (m−3)(m+3): x=(m−3)(m+3)−(m−3) x=m+3−1 The condition m=3 is necessary, otherwise the original expression has undefined terms. Also, we need m=−3, otherwise we are dividing by zero.