The problem asks to calculate the determinants of the following 2x2 matrices: a) $\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix}$ b) $\begin{vmatrix} 1 & 3 \\ 1 & 7 \end{vmatrix}$ c) $\begin{vmatrix} 5 & 7 \\ 6 & 8 \end{vmatrix}$ d) $\begin{vmatrix} 3 & 6 \\ 4 & 8 \end{vmatrix}$ e) $\begin{vmatrix} a & b \\ b & a \end{vmatrix}$ f) $\begin{vmatrix} a-b & 1 \\ 1 & a+b \end{vmatrix}$ g) $\begin{vmatrix} a-b & -2 \\ ab & a-b \end{vmatrix}$ h) $\begin{vmatrix} x & y^2 \\ y & x^2 \end{vmatrix}$

AlgebraLinear AlgebraDeterminantsMatrices
2025/5/25

1. Problem Description

The problem asks to calculate the determinants of the following 2x2 matrices:
a) 1225\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix}
b) 1317\begin{vmatrix} 1 & 3 \\ 1 & 7 \end{vmatrix}
c) 5768\begin{vmatrix} 5 & 7 \\ 6 & 8 \end{vmatrix}
d) 3648\begin{vmatrix} 3 & 6 \\ 4 & 8 \end{vmatrix}
e) abba\begin{vmatrix} a & b \\ b & a \end{vmatrix}
f) ab11a+b\begin{vmatrix} a-b & 1 \\ 1 & a+b \end{vmatrix}
g) ab2abab\begin{vmatrix} a-b & -2 \\ ab & a-b \end{vmatrix}
h) xy2yx2\begin{vmatrix} x & y^2 \\ y & x^2 \end{vmatrix}

2. Solution Steps

The determinant of a 2x2 matrix abcd\begin{vmatrix} a & b \\ c & d \end{vmatrix} is calculated as adbcad - bc.
a) 1225=(1)(5)(2)(2)=54=1\begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = (1)(5) - (2)(2) = 5 - 4 = 1
b) 1317=(1)(7)(3)(1)=73=4\begin{vmatrix} 1 & 3 \\ 1 & 7 \end{vmatrix} = (1)(7) - (3)(1) = 7 - 3 = 4
c) 5768=(5)(8)(7)(6)=4042=2\begin{vmatrix} 5 & 7 \\ 6 & 8 \end{vmatrix} = (5)(8) - (7)(6) = 40 - 42 = -2
d) 3648=(3)(8)(6)(4)=2424=0\begin{vmatrix} 3 & 6 \\ 4 & 8 \end{vmatrix} = (3)(8) - (6)(4) = 24 - 24 = 0
e) abba=(a)(a)(b)(b)=a2b2\begin{vmatrix} a & b \\ b & a \end{vmatrix} = (a)(a) - (b)(b) = a^2 - b^2
f) ab11a+b=(ab)(a+b)(1)(1)=a2b21\begin{vmatrix} a-b & 1 \\ 1 & a+b \end{vmatrix} = (a-b)(a+b) - (1)(1) = a^2 - b^2 - 1
g) ab2abab=(ab)(ab)(2)(ab)=(ab)2+2ab=a22ab+b2+2ab=a2+b2\begin{vmatrix} a-b & -2 \\ ab & a-b \end{vmatrix} = (a-b)(a-b) - (-2)(ab) = (a-b)^2 + 2ab = a^2 - 2ab + b^2 + 2ab = a^2 + b^2
h) xy2yx2=(x)(x2)(y2)(y)=x3y3\begin{vmatrix} x & y^2 \\ y & x^2 \end{vmatrix} = (x)(x^2) - (y^2)(y) = x^3 - y^3

3. Final Answer

a) 1
b) 4
c) -2
d) 0
e) a2b2a^2 - b^2
f) a2b21a^2 - b^2 - 1
g) a2+b2a^2 + b^2
h) x3y3x^3 - y^3

Related problems in "Algebra"

a) Find the gradient and y-intercept of the line given by the equation $x + 2y = 14$. b) Find the eq...

Linear EquationsSlope-Intercept FormPartial FractionsCoordinate Geometry
2025/6/9

We are given a set of math problems. a) (i) Express 5630 in standard form. (ii) Express 16346000000 ...

Scientific NotationEngineering NotationPolynomialsSimplificationRemainder TheoremSimultaneous EquationsLogarithmsLinear Equations
2025/6/9

The problem provides two real numbers $a$ and $b$ such that $a = 2 + \sqrt{3}$ and $ab = -\sqrt{3}$....

Algebraic ManipulationInequalitiesRationalizationSquare Roots
2025/6/9

The problem consists of two parts. Part 1: There are three different equilateral triangles made of c...

Algebraic ExpressionsGeometric PatternsProblem Solving
2025/6/9

We are given four problems: a) i. Show that $f(x) = \sqrt{x}$ is not a function using the vertical l...

FunctionsVertical Line TestRangeLinear FunctionsInverse Functions
2025/6/9

Solve the quadratic equation $x^2 + 4x + 1 = 0$ by completing the square.

Quadratic EquationsCompleting the SquareAlgebraic Manipulation
2025/6/9

The problem asks us to resolve the rational function $\frac{4x-3}{(x+1)^2}$ into partial fractions.

Partial FractionsRational FunctionsAlgebraic Manipulation
2025/6/9

The problem asks to simplify the given expression: $\frac{x^2y^3 + xy^2}{xy}$.

SimplificationAlgebraic ExpressionsFactoringPolynomials
2025/6/9

The problem asks us to evaluate the expression $3pq^3r^3$ when $p=\frac{2}{3}$, $q=-2$, and $r=-1$.

Algebraic ExpressionsSubstitutionExponentsEvaluation
2025/6/9

The problem is to factor the given expression $9m^5n^2 + 12m^3n$.

FactoringGreatest Common FactorPolynomials
2025/6/9