We are asked to solve the inequality $|\frac{3x}{2x+3}| < 2$.

AlgebraInequalitiesAbsolute ValueRational Functions
2025/5/26

1. Problem Description

We are asked to solve the inequality 3x2x+3<2|\frac{3x}{2x+3}| < 2.

2. Solution Steps

We have the inequality
3x2x+3<2|\frac{3x}{2x+3}| < 2.
This is equivalent to
2<3x2x+3<2-2 < \frac{3x}{2x+3} < 2.
We can split this into two inequalities:
3x2x+3<2\frac{3x}{2x+3} < 2 and 3x2x+3>2\frac{3x}{2x+3} > -2.
First, consider 3x2x+3<2\frac{3x}{2x+3} < 2.
3x2x+32<0\frac{3x}{2x+3} - 2 < 0
3x2(2x+3)2x+3<0\frac{3x - 2(2x+3)}{2x+3} < 0
3x4x62x+3<0\frac{3x - 4x - 6}{2x+3} < 0
x62x+3<0\frac{-x-6}{2x+3} < 0
x+62x+3>0\frac{x+6}{2x+3} > 0
We find the critical points x=6x = -6 and x=32x = -\frac{3}{2}.
We consider three intervals: x<6x < -6, 6<x<32-6 < x < -\frac{3}{2}, and x>32x > -\frac{3}{2}.
If x<6x < -6, then x+6<0x+6 < 0 and 2x+3<02x+3 < 0, so x+62x+3>0\frac{x+6}{2x+3} > 0.
If 6<x<32-6 < x < -\frac{3}{2}, then x+6>0x+6 > 0 and 2x+3<02x+3 < 0, so x+62x+3<0\frac{x+6}{2x+3} < 0.
If x>32x > -\frac{3}{2}, then x+6>0x+6 > 0 and 2x+3>02x+3 > 0, so x+62x+3>0\frac{x+6}{2x+3} > 0.
Thus, x+62x+3>0\frac{x+6}{2x+3} > 0 when x<6x < -6 or x>32x > -\frac{3}{2}.
Now, consider 3x2x+3>2\frac{3x}{2x+3} > -2.
3x2x+3+2>0\frac{3x}{2x+3} + 2 > 0
3x+2(2x+3)2x+3>0\frac{3x + 2(2x+3)}{2x+3} > 0
3x+4x+62x+3>0\frac{3x + 4x + 6}{2x+3} > 0
7x+62x+3>0\frac{7x+6}{2x+3} > 0
We find the critical points x=67x = -\frac{6}{7} and x=32x = -\frac{3}{2}.
We consider three intervals: x<32x < -\frac{3}{2}, 32<x<67-\frac{3}{2} < x < -\frac{6}{7}, and x>67x > -\frac{6}{7}.
If x<32x < -\frac{3}{2}, then 7x+6<07x+6 < 0 and 2x+3<02x+3 < 0, so 7x+62x+3>0\frac{7x+6}{2x+3} > 0.
If 32<x<67-\frac{3}{2} < x < -\frac{6}{7}, then 7x+6<07x+6 < 0 and 2x+3>02x+3 > 0, so 7x+62x+3<0\frac{7x+6}{2x+3} < 0.
If x>67x > -\frac{6}{7}, then 7x+6>07x+6 > 0 and 2x+3>02x+3 > 0, so 7x+62x+3>0\frac{7x+6}{2x+3} > 0.
Thus, 7x+62x+3>0\frac{7x+6}{2x+3} > 0 when x<32x < -\frac{3}{2} or x>67x > -\frac{6}{7}.
We need both inequalities to be satisfied.
The first inequality is satisfied when x<6x < -6 or x>32x > -\frac{3}{2}.
The second inequality is satisfied when x<32x < -\frac{3}{2} or x>67x > -\frac{6}{7}.
Therefore, we want the intersection of (,6)(32,)(-\infty, -6) \cup (-\frac{3}{2}, \infty) and (,32)(67,)(-\infty, -\frac{3}{2}) \cup (-\frac{6}{7}, \infty).
This is (,6)(67,)(-\infty, -6) \cup (-\frac{6}{7}, \infty).

3. Final Answer

x(,6)(67,)x \in (-\infty, -6) \cup (-\frac{6}{7}, \infty)

Related problems in "Algebra"

a) Find the gradient and y-intercept of the line given by the equation $x + 2y = 14$. b) Find the eq...

Linear EquationsSlope-Intercept FormPartial FractionsCoordinate Geometry
2025/6/9

We are given a set of math problems. a) (i) Express 5630 in standard form. (ii) Express 16346000000 ...

Scientific NotationEngineering NotationPolynomialsSimplificationRemainder TheoremSimultaneous EquationsLogarithmsLinear Equations
2025/6/9

The problem provides two real numbers $a$ and $b$ such that $a = 2 + \sqrt{3}$ and $ab = -\sqrt{3}$....

Algebraic ManipulationInequalitiesRationalizationSquare Roots
2025/6/9

The problem consists of two parts. Part 1: There are three different equilateral triangles made of c...

Algebraic ExpressionsGeometric PatternsProblem Solving
2025/6/9

We are given four problems: a) i. Show that $f(x) = \sqrt{x}$ is not a function using the vertical l...

FunctionsVertical Line TestRangeLinear FunctionsInverse Functions
2025/6/9

Solve the quadratic equation $x^2 + 4x + 1 = 0$ by completing the square.

Quadratic EquationsCompleting the SquareAlgebraic Manipulation
2025/6/9

The problem asks us to resolve the rational function $\frac{4x-3}{(x+1)^2}$ into partial fractions.

Partial FractionsRational FunctionsAlgebraic Manipulation
2025/6/9

The problem asks to simplify the given expression: $\frac{x^2y^3 + xy^2}{xy}$.

SimplificationAlgebraic ExpressionsFactoringPolynomials
2025/6/9

The problem asks us to evaluate the expression $3pq^3r^3$ when $p=\frac{2}{3}$, $q=-2$, and $r=-1$.

Algebraic ExpressionsSubstitutionExponentsEvaluation
2025/6/9

The problem is to factor the given expression $9m^5n^2 + 12m^3n$.

FactoringGreatest Common FactorPolynomials
2025/6/9