We have the inequality
∣2x+33x∣<2. This is equivalent to
−2<2x+33x<2. We can split this into two inequalities:
2x+33x<2 and 2x+33x>−2. First, consider 2x+33x<2. 2x+33x−2<0 2x+33x−2(2x+3)<0 2x+33x−4x−6<0 2x+3−x−6<0 2x+3x+6>0 We find the critical points x=−6 and x=−23. We consider three intervals: x<−6, −6<x<−23, and x>−23. If x<−6, then x+6<0 and 2x+3<0, so 2x+3x+6>0. If −6<x<−23, then x+6>0 and 2x+3<0, so 2x+3x+6<0. If x>−23, then x+6>0 and 2x+3>0, so 2x+3x+6>0. Thus, 2x+3x+6>0 when x<−6 or x>−23. Now, consider 2x+33x>−2. 2x+33x+2>0 2x+33x+2(2x+3)>0 2x+33x+4x+6>0 2x+37x+6>0 We find the critical points x=−76 and x=−23. We consider three intervals: x<−23, −23<x<−76, and x>−76. If x<−23, then 7x+6<0 and 2x+3<0, so 2x+37x+6>0. If −23<x<−76, then 7x+6<0 and 2x+3>0, so 2x+37x+6<0. If x>−76, then 7x+6>0 and 2x+3>0, so 2x+37x+6>0. Thus, 2x+37x+6>0 when x<−23 or x>−76. We need both inequalities to be satisfied.
The first inequality is satisfied when x<−6 or x>−23. The second inequality is satisfied when x<−23 or x>−76. Therefore, we want the intersection of (−∞,−6)∪(−23,∞) and (−∞,−23)∪(−76,∞). This is (−∞,−6)∪(−76,∞).