From the first equation, we have z=y−x. Substituting this into the second and third equations gives: (a+b)x−(a+c)y+(b+c)(y−x)=0 abx−acy+bc(y−x)=1 Simplifying the second equation:
(a+b)x−(a+c)y+(b+c)y−(b+c)x=0 (a+b−b−c)x+(−a−c+b+c)y=0 (a−c)x+(b−a)y=0 (a−c)x=(a−b)y y=a−ba−cx Now, simplifying the third equation:
abx−acy+bcy−bcx=1 (ab−bc)x+(bc−ac)y=1 b(a−c)x+c(b−a)y=1 Substitute y=a−ba−cx into the simplified third equation: b(a−c)x+c(b−a)a−ba−cx=1 [b(a−c)+c(b−a)a−ba−c]x=1 [b(a−c)(a−b)+c(b−a)(a−c)]x=(a−b) (a−c)[b(a−b)+c(b−a)]x=(a−b) (a−c)[ab−b2+cb−ca]x=(a−b) (a−c)[ab−b2+cb−ca]x=(a−b) x=(a−c)(ab−b2+bc−ac)a−b Now, we find y:
y=a−ba−cx=a−ba−c(a−c)(ab−b2+bc−ac)a−b=ab−b2+bc−ac1 Finally, we find z:
z=y−x=ab−b2+bc−ac1−(a−c)(ab−b2+bc−ac)a−b z=(a−c)(ab−b2+bc−ac)(a−c)−(a−b)=(a−c)(ab−b2+bc−ac)a−c−a+b=(a−c)(ab−b2+bc−ac)b−c We can factor (ab−b2+bc−ac) as: ab−b2+bc−ac=b(a−b)−c(a−b)=(a−b)(b−c) So x=(a−c)(a−b)(b−c)a−b=(a−c)(b−c)1 y=(a−b)(b−c)1 z=(a−c)(a−b)(b−c)b−c=(a−c)(a−b)1