First, we factor the denominator on the right-hand side:
x2+3x+2=(x+1)(x+2). So the equation becomes:
(m−1)(x+2)2m−5−x+13=(x+1)(x+2)3x+4. We multiply both sides of the equation by (m−1)(x+1)(x+2) to eliminate the denominators. (x+1)(2m−5)−3(m−1)(x+2)=(m−1)(3x+4) (2m−5)(x+1)−3(m−1)(x+2)=(m−1)(3x+4) 2mx+2m−5x−5−3(mx+2m−x−2)=3mx+4m−3x−4 2mx+2m−5x−5−3mx−6m+3x+6=3mx+4m−3x−4 −mx−4m−2x+1=3mx+4m−3x−4 −mx−3mx−4m−4m=−3x+2x−4−1 −4mx−8m=−x−5 m(−4x−8)=−x−5 m=−4x−8−x−5=4x+8x+5=4(x+2)x+5