The problem asks to determine whether the given series converges or diverges. If a series converges, we need to find its sum. We will examine problems 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14.

AnalysisSeriesConvergenceDivergenceGeometric SeriesTelescoping SeriesHarmonic SeriesRatio TestPartial Fraction Decomposition
2025/5/27

1. Problem Description

The problem asks to determine whether the given series converges or diverges. If a series converges, we need to find its sum. We will examine problems 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and
1
4.

2. Solution Steps

1. $\sum_{k=1}^{\infty} (\frac{1}{7})^k$: This is a geometric series with $a = \frac{1}{7}$ and $r = \frac{1}{7}$. Since $|r| = \frac{1}{7} < 1$, the series converges. The sum is $\frac{a}{1-r} = \frac{\frac{1}{7}}{1-\frac{1}{7}} = \frac{\frac{1}{7}}{\frac{6}{7}} = \frac{1}{6}$.

2. $\sum_{k=1}^{\infty} (-\frac{1}{4})^{-k-2} = \sum_{k=1}^{\infty} (-4)^{k+2} = \sum_{k=1}^{\infty} (-4)^2(-4)^k = 16\sum_{k=1}^{\infty} (-4)^k$. This is a geometric series with $a = -4$ and $r = -4$. Since $|r| = 4 > 1$, the series diverges.

3. $\sum_{k=0}^{\infty} [2(\frac{1}{4})^k + 3(-\frac{1}{5})^k] = 2\sum_{k=0}^{\infty} (\frac{1}{4})^k + 3\sum_{k=0}^{\infty} (-\frac{1}{5})^k$. Both are geometric series.

The first series has a=1a = 1 and r=14r = \frac{1}{4}. The sum is 1114=134=43\frac{1}{1-\frac{1}{4}} = \frac{1}{\frac{3}{4}} = \frac{4}{3}.
The second series has a=1a = 1 and r=15r = -\frac{1}{5}. The sum is 11(15)=165=56\frac{1}{1-(-\frac{1}{5})} = \frac{1}{\frac{6}{5}} = \frac{5}{6}.
So the overall sum is 2(43)+3(56)=83+156=166+156=3162(\frac{4}{3}) + 3(\frac{5}{6}) = \frac{8}{3} + \frac{15}{6} = \frac{16}{6} + \frac{15}{6} = \frac{31}{6}.

4. $\sum_{k=1}^{\infty} [5(\frac{1}{2})^k - 3(\frac{1}{7})^{k+1}] = 5\sum_{k=1}^{\infty} (\frac{1}{2})^k - 3\sum_{k=1}^{\infty} (\frac{1}{7})^{k+1}$.

The first series has a=12a = \frac{1}{2} and r=12r = \frac{1}{2}. The sum is 12112=1212=1\frac{\frac{1}{2}}{1-\frac{1}{2}} = \frac{\frac{1}{2}}{\frac{1}{2}} = 1.
The second series has a=(17)2=149a = (\frac{1}{7})^2 = \frac{1}{49} and r=17r = \frac{1}{7}. The sum is 149117=14967=14976=142\frac{\frac{1}{49}}{1-\frac{1}{7}} = \frac{\frac{1}{49}}{\frac{6}{7}} = \frac{1}{49} \cdot \frac{7}{6} = \frac{1}{42}.
So the overall sum is 5(1)3(142)=5342=5114=7014114=69145(1) - 3(\frac{1}{42}) = 5 - \frac{3}{42} = 5 - \frac{1}{14} = \frac{70}{14} - \frac{1}{14} = \frac{69}{14}.

5. $\sum_{k=1}^{\infty} \frac{k-5}{k+2}$. We can use the divergence test. $\lim_{k\to\infty} \frac{k-5}{k+2} = \lim_{k\to\infty} \frac{1 - \frac{5}{k}}{1 + \frac{2}{k}} = \frac{1}{1} = 1 \neq 0$. Since the limit is not 0, the series diverges.

6. $\sum_{k=1}^{\infty} (\frac{9}{8})^k$. This is a geometric series with $a = \frac{9}{8}$ and $r = \frac{9}{8}$. Since $|r| = \frac{9}{8} > 1$, the series diverges.

7. $\sum_{k=2}^{\infty} (\frac{1}{k} - \frac{1}{k-1})$. This is a telescoping series. Let's write out a few terms: $(\frac{1}{2} - \frac{1}{1}) + (\frac{1}{3} - \frac{1}{2}) + (\frac{1}{4} - \frac{1}{3}) + ... = -1 + (\frac{1}{2} - \frac{1}{2}) + (\frac{1}{3} - \frac{1}{3}) + ...$. So the sum is -

1.

8. $\sum_{k=1}^{\infty} \frac{3}{k} = 3\sum_{k=1}^{\infty} \frac{1}{k}$. This is a harmonic series multiplied by a constant. The harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges. Thus, the series diverges.

9. $\sum_{k=1}^{\infty} \frac{k!}{100^k}$. We can use the ratio test. Let $a_k = \frac{k!}{100^k}$. Then $\frac{a_{k+1}}{a_k} = \frac{\frac{(k+1)!}{100^{k+1}}}{\frac{k!}{100^k}} = \frac{(k+1)!}{k!} \cdot \frac{100^k}{100^{k+1}} = (k+1) \cdot \frac{1}{100} = \frac{k+1}{100}$. $\lim_{k\to\infty} \frac{k+1}{100} = \infty > 1$. Thus, the series diverges.

1

0. $\sum_{k=1}^{\infty} \frac{2}{(k+2)k}$. We can use partial fraction decomposition: $\frac{2}{k(k+2)} = \frac{A}{k} + \frac{B}{k+2}$. $2 = A(k+2) + Bk$. Let $k = 0$, then $2 = 2A$, so $A = 1$. Let $k = -2$, then $2 = -2B$, so $B = -1$. Thus, $\frac{2}{k(k+2)} = \frac{1}{k} - \frac{1}{k+2}$.

So the series is k=1(1k1k+2)=(1113)+(1214)+(1315)+(1416)+...=1+12=32\sum_{k=1}^{\infty} (\frac{1}{k} - \frac{1}{k+2}) = (\frac{1}{1} - \frac{1}{3}) + (\frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{5}) + (\frac{1}{4} - \frac{1}{6}) + ... = 1 + \frac{1}{2} = \frac{3}{2}.
1

1. $\sum_{k=1}^{\infty} (\frac{e}{\pi})^{k+1}$. This is a geometric series with $a = (\frac{e}{\pi})^2$ and $r = \frac{e}{\pi}$. Since $e \approx 2.718$ and $\pi \approx 3.141$, we have $\frac{e}{\pi} < 1$. Thus, $|r| < 1$ and the series converges. The sum is $\frac{(\frac{e}{\pi})^2}{1-\frac{e}{\pi}} = \frac{\frac{e^2}{\pi^2}}{\frac{\pi - e}{\pi}} = \frac{e^2}{\pi^2} \cdot \frac{\pi}{\pi - e} = \frac{e^2}{\pi(\pi-e)}$.

1

2. $\sum_{k=1}^{\infty} \frac{4^{k+1}}{7^{k-1}} = \sum_{k=1}^{\infty} \frac{4^2 \cdot 4^{k-1}}{7^{k-1}} = 16\sum_{k=1}^{\infty} (\frac{4}{7})^{k-1} = 16\sum_{k=0}^{\infty} (\frac{4}{7})^k$. This is a geometric series with $a = 1$ and $r = \frac{4}{7}$. Since $|r| < 1$, the series converges. The sum is $16 \cdot \frac{1}{1-\frac{4}{7}} = 16 \cdot \frac{1}{\frac{3}{7}} = 16 \cdot \frac{7}{3} = \frac{112}{3}$.

1

3. $\sum_{k=2}^{\infty} (\frac{3}{(k-1)^2} - \frac{3}{k^2}) = 3\sum_{k=2}^{\infty} (\frac{1}{(k-1)^2} - \frac{1}{k^2})$. This is a telescoping series. Let $j = k - 1$. $3\sum_{k=2}^{\infty} (\frac{1}{(k-1)^2} - \frac{1}{k^2}) = 3[(\frac{1}{1^2} - \frac{1}{2^2}) + (\frac{1}{2^2} - \frac{1}{3^2}) + (\frac{1}{3^2} - \frac{1}{4^2}) + ...] = 3(1) = 3$.

1

4. $\sum_{k=6}^{\infty} \frac{2}{k-5}$. Let $j = k - 5$. Then $k = j+5$, and when $k=6$, $j = 1$. So $\sum_{k=6}^{\infty} \frac{2}{k-5} = \sum_{j=1}^{\infty} \frac{2}{j} = 2\sum_{j=1}^{\infty} \frac{1}{j}$. This is a harmonic series multiplied by a constant. The harmonic series diverges. Thus, the series diverges.

3. Final Answer

1. Converges, Sum = 1/6

2. Diverges

3. Converges, Sum = 31/6

4. Converges, Sum = 69/14

5. Diverges

6. Diverges

7. Converges, Sum = -1

8. Diverges

9. Diverges

1

0. Converges, Sum = 3/2

1

1. Converges, Sum = $e^2/(\pi(\pi-e))$

1

2. Converges, Sum = 112/3

1

3. Converges, Sum = 3

1

4. Diverges

Related problems in "Analysis"

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29

We are asked to evaluate the following limit: $\lim_{x \to 1} \frac{x^3 - 2x + 1}{x^2 + 4x - 5}$.

LimitsCalculusPolynomial FactorizationIndeterminate Forms
2025/5/29

We need to find the limit of the expression $\frac{2x^3 - 2x + 1}{x^2 + 4x - 5}$ as $x$ approaches $...

LimitsCalculusRational FunctionsPolynomial DivisionOne-sided Limits
2025/5/29

The problem is to solve the equation $\sin(x - \frac{\pi}{2}) = -\frac{\sqrt{2}}{2}$ for $x$.

TrigonometryTrigonometric EquationsSine FunctionPeriodicity
2025/5/29

We are asked to evaluate the limit: $\lim_{x \to +\infty} \frac{(2x-1)^3(x+2)^5}{x^8-1}$

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the function $\frac{(2x-1)^3(x+2)^5}{x^8-1}$ as $x$ approaches inf...

LimitsFunctionsAsymptotic Analysis
2025/5/29