We are asked to evaluate the limit: $\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1+\cos x}}{\sin^2 x}$

AnalysisLimitsTrigonometryL'Hôpital's Rule (Implicit)RationalizationCalculus
2025/5/27

1. Problem Description

We are asked to evaluate the limit:
limx021+cosxsin2x\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1+\cos x}}{\sin^2 x}

2. Solution Steps

First, we multiply the numerator and denominator by 2+1+cosx\sqrt{2} + \sqrt{1+\cos x}:
limx021+cosxsin2x=limx0(21+cosx)(2+1+cosx)sin2x(2+1+cosx)=limx02(1+cosx)sin2x(2+1+cosx)\lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1+\cos x}}{\sin^2 x} = \lim_{x \to 0} \frac{(\sqrt{2} - \sqrt{1+\cos x})(\sqrt{2} + \sqrt{1+\cos x})}{\sin^2 x (\sqrt{2} + \sqrt{1+\cos x})} = \lim_{x \to 0} \frac{2 - (1+\cos x)}{\sin^2 x (\sqrt{2} + \sqrt{1+\cos x})}
=limx01cosxsin2x(2+1+cosx)= \lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x (\sqrt{2} + \sqrt{1+\cos x})}
We can use the identity sin2x=1cos2x=(1cosx)(1+cosx)\sin^2 x = 1 - \cos^2 x = (1 - \cos x)(1 + \cos x):
limx01cosx(1cosx)(1+cosx)(2+1+cosx)=limx01(1+cosx)(2+1+cosx)\lim_{x \to 0} \frac{1 - \cos x}{(1 - \cos x)(1 + \cos x) (\sqrt{2} + \sqrt{1+\cos x})} = \lim_{x \to 0} \frac{1}{(1 + \cos x)(\sqrt{2} + \sqrt{1+\cos x})}
Now, as x0x \to 0, cosx1\cos x \to 1, so
limx01(1+cosx)(2+1+cosx)=1(1+1)(2+1+1)=12(2+2)=12(22)=142\lim_{x \to 0} \frac{1}{(1 + \cos x)(\sqrt{2} + \sqrt{1+\cos x})} = \frac{1}{(1 + 1)(\sqrt{2} + \sqrt{1+1})} = \frac{1}{2(\sqrt{2} + \sqrt{2})} = \frac{1}{2(2\sqrt{2})} = \frac{1}{4\sqrt{2}}
We can rationalize the denominator:
142=2422=24(2)=28\frac{1}{4\sqrt{2}} = \frac{\sqrt{2}}{4\sqrt{2}\sqrt{2}} = \frac{\sqrt{2}}{4(2)} = \frac{\sqrt{2}}{8}

3. Final Answer

28\frac{\sqrt{2}}{8}

Related problems in "Analysis"

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29

We are asked to evaluate the following limit: $\lim_{x \to 1} \frac{x^3 - 2x + 1}{x^2 + 4x - 5}$.

LimitsCalculusPolynomial FactorizationIndeterminate Forms
2025/5/29

We need to find the limit of the expression $\frac{2x^3 - 2x + 1}{x^2 + 4x - 5}$ as $x$ approaches $...

LimitsCalculusRational FunctionsPolynomial DivisionOne-sided Limits
2025/5/29

The problem is to solve the equation $\sin(x - \frac{\pi}{2}) = -\frac{\sqrt{2}}{2}$ for $x$.

TrigonometryTrigonometric EquationsSine FunctionPeriodicity
2025/5/29

We are asked to evaluate the limit: $\lim_{x \to +\infty} \frac{(2x-1)^3(x+2)^5}{x^8-1}$

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the function $\frac{(2x-1)^3(x+2)^5}{x^8-1}$ as $x$ approaches inf...

LimitsFunctionsAsymptotic Analysis
2025/5/29

We need to evaluate the definite integral and subtract a constant. The expression is: $A(R) = \int_{...

Definite IntegralIntegrationCalculus
2025/5/28